References
- Parisch, H., 'Continuum based shell theory for non-linear applications,' Int. J. Numer. Methods. Engrg. Vol. 38, pp. 1855-1883, 1995 https://doi.org/10.1002/nme.1620381105
- Sansour, C. and Bufler, H., 'An exact finite rotation shell theory, its mixed variational formulation and its finte element implementation,' Int. J. Numer. Methods. Engrg. Vol. 34, pp. 73-115, 1992 https://doi.org/10.1002/nme.1620340107
- Buechter, N. and Ramm, E., 'Shell theory versus degeneration-A comparison in large rotation shell theory,' Int. J. Mumer. Methods. Engrg. Vol. 34, pp. 39-59, 1992 https://doi.org/10.1002/nme.1620340105
- Oliver, J. and Onate, E., 'A Total Lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part 1. Two dimensional problems: shell and plate structures,' Int. J. Numer. Methods. Engrg. Vol. 20, pp. 2253-2281, 1984 https://doi.org/10.1002/nme.1620201208
- Peng, X. and Crisfield, M.A., 'A consistent co-rotational formulation for shells using the constant stress/constant moment triangle,' Int. J. Numer. Methods. Engrg. Vol. 35, pp. 1829-1847, 1992 https://doi.org/10.1002/nme.1620350907
- Moita, G.F. and Crisfield, M.A., 'A finite element formulation for 3-D continua using the co-rotaional technique,' Int. J. Numer. Methods. Engrg. Vol. 39, pp. 3775-3792, 1996 https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3775::AID-NME23>3.0.CO;2-W
- Lee, K, 'Analysis of large displacements and large rotaions of three-dimensional beams by using small strains and unit vectors,' Commun. Numer. Methods. Engrg. Vol. 13, pp. 987-997, 1997 https://doi.org/10.1002/(SICI)1099-0887(199712)13:12<987::AID-CNM116>3.0.CO;2-N
- Zienkiewicz, O.C. and Taylor, R.L., 'The finite Element Method,' Vol. 2, Mc-Graw Hill, New York, 1991
- Levy, S., 'Bending of rectangular plates with large deflections,' NACA Technical Note, No. 846, 1942
- ABAQUS, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, Version 5.8, 1998
- Lee, K., 'An Accelerated iterative method for contact analysis,' Int. J. Numer. Methods. Engrg. Vol. 28, pp. 279-293, 1989 https://doi.org/10.1002/nme.1620280204