A Sliding Mode Controller Using Neural Network for Underwater Robot Manipulator

해저작업 로봇 매니퓰레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어기

  • 이민호 (경북대학교 센서공학과 센서기술연구소) ;
  • 최형식 (한국해양대학교 기계정보공학과)
  • Published : 2000.04.01

Abstract

This paper presents a new control scheme using a sliding mode controller with a multilayer neural network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network using the error back propagation loaming algorithm acts as a compensator of the conventional sliding mode controller to improve the control performance when the initial assumptions of uncertainty bounds are not valid. Computer simulation results show that the proposed control scheme gives an effective path way to cope with the unexpected large uncertainties in the underwater robot manipulator.

Keywords

References

  1. E. S. Kang, J. S. Song, J. H. Kim, and H. S. Cho, 'Dynamic characteristic and control of submerged working robot manipulator', KSME, vol. 5, 2, pp. 488-496, 1991
  2. H. S. Choi, 'Modeling of robot manipulators working under the sea and the design of a robust controller,' Int. J. Robotica, vol. 14, pp. 213-218, 1996
  3. V. F. Filaretov and E. V. Koval 'Autonomous stabilization of underwater robots in the time manipulation operations', Proc. Int. O.P.E.C, Osaks, Japan, April 1994, pp. 382-388
  4. D. N. Yoerger and J. E. Slotine, 'Robust trajectory control of underwater vehicles,' IEEE J. Oceanic Eng., vol. OE-10, pp. 462-470, Oct. 1985 https://doi.org/10.1109/JOE.1985.1145131
  5. K.P. Goheen and E.R. Jefferys, 'On adaptive control of remotely operated underwater vehicles,' Int. J. Adaptive Control and Signal Processing, vol. 4, pp. 287-297, 1990 https://doi.org/10.1002/acs.4480040405
  6. J. Yuh and W. E. Holley, 'Application of discrete-time model reference adaptive control to industrial robots: A computer simulation,' J. Manufactur. Syst., vol. 7, no. 1, pp. 47-56, 1988
  7. Inge Spangelo and Olav Egeland, 'Generation of energy-optimal trajectories for an autonomous underwater vehicle', IEEE Int. Conf. Robotics and Automation, pp. 2107-2112, 1992 https://doi.org/10.1109/ROBOT.1992.219970
  8. D. S. Yoo, M. J. Chung, 'A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties,' IEEE Trans. on Automatic Control, vol. 37, no. 6, pp. 860-864, 1992 https://doi.org/10.1109/9.256348
  9. M. Lee, B. J. Choi, S. Y. Lee, C. H. Park and B. K. Kim, 'A study on the design of optimal variable structure controller using multilayer neural inverse identifier,' J. of The Korea Institute of Telematics and Electronics, vol. 32(B), no. 12, pp. 1670-1679, 1995
  10. R. M. Sanner and J. J. E. Slotine, 'Gaussian networks for direct adaptive control,' IEEE Trans. on Neural Networks, vol. 3, no. 6, pp. 837-863, 1992 https://doi.org/10.1109/72.165588
  11. R. Bhattacharyya, Dynamics of Marine Vehicle, John Willey & Sons, 1978
  12. K. R. Goheen, 'Modeling methods for underwater robotic vehicle dynamics', J. of Robotic Systems 8(3), 295-317, 1991 https://doi.org/10.1002/rob.4620080303
  13. J. E. A. John and W. L. Haberman, Fluid Mechanics, Prentice Hall, 1980
  14. U. Iktis, Control Systems of Variable Structure, John Wiley & Sons, New York, 1987
  15. D. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representation by error back propagation, Parallel Distributed Processing, vol. 1, MIT Press, 1986