References
- Z. Wahr. Verw. Geb. v.60 On the functional central limit theorem and the law of iterated logarithm for Markov processes Bhattacharya, R. N.
- J. Theoretical Probability v.8 Ergodicity of Nonlinear First Orther Autoregressive Models Bhattacharya, R. N.;Lee, C .H.
- Statistics & Probability Letters v.22 On geometric ergodicity of nonlinear autoregressive models
- Ann. Prob.;Correction Note. Ann. Probab. v.16;25 Asymptotics of a class of Markov processes which are not in general irreducible Bhattacharya, R. N.;Lee, O.
- Convergence of Probability Measures Billingsley, P.
- Adv. Appl. Probab. v.17 On the ues of the deterministic Lyapunov function for the ergodicity of stochastic difference equations Chan, K. S.;H. Tong
- Dokl. Akad. Nauk. SSSR. v.19 The central limit theorem for stationary ergodic Markov process Gordin, M. I.;Lifsic, B. A.
- Stats. and Probab. Lett. v.40 Asymptotics of a class of pth-order nonlinear autoregressive processes Lee, C .H.
- General Irreducible Markov chains and Nonnegative Operators Nummelin, E.
- Adv. Appl. Probab. v.22 Nonlinear time series and Markov chains Tjφstheim, D.