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ON THE EXISTENCE OF AN INVARIANT
PROBABILITY AND THE FUNCTIONAL CENTRAL
LIMIT THEOREM OF A CLASS OF NONLINEAR
AUTOREGRESSIVE PROCESSES

CHANHO LEE* AND YOUNGMEE KWON

ABSTRACT. Existence of a unique invariant probability is considered
for a class of Markov processes which may not be irreducible and a
functional central limit theorem for a class of nonlinear irreducible
uniformly ergodic processes is derived as well.

1. Introduction

Let (S, p) be a metric space, I" a set of measurable maps on S into
itself, 7 a o-field on I such that the wap (7, z) — v(z) is measurable on
(' x S, T ®B(S)) into (S, B(S)), where B(S) denotes the Borel o-field
of S.

Let P be a probability measure on (I', 7). Gn some probability space
(Q, F, Q) is given a sequence of i.i.d. random maps ay, oy, ... with com-
mon distribution P. For a given random variable Xy, independent of oy,
define X| = 01Xy, ..., Xp = 0, X1 = @p - - - @1 Xp - - - . Then, in view of
the independence of o, X, is a Markov process on S.

Let p(z, dy) denote the transition probability given by

(1.1) p(z,B) = P({yeTl:v(z)eB}), z€S, BeB(9).

We often write X,(f) for X, in case Xy = z. Denote by P" the product
measure P x--- x P on (™, T®"). A probability measure 7 on (S, B(S))
is said to be invariant for p if 7(B) = [ p(z, B)n(dz), B € B(S).
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We shall write p™ (z, dy) for the n-step transition probability with p() =
p. Then p(™(z, dy) is the distribution of X,(z).

In this article S is a closed subset of R!. For I' one takes a set of

measurable monotone (non-increasing or non-decreasing) functions on S
into itself. We say that p is p-irreducible with respect to a nontrivial
measure ¢ on S if ¢(B) > 0 implies that for each z there exists n such
that p™(z, B) > 0.
The transition probability p may not be p-irreducible for any nonzero o-
finite measure . One of the two main interests in the paper is to look at
one such class of processes X, to get some conditions under which there
exist unique invariant probabilities 7. And the other is, for an example
of such process, which is known as a nonlinear 1st-order autoregressive
process, under irreducibility, to identify broad classes of functions v in
L%(S, ) for which the functional central limit theorem (FCLT) holds,
i.e., the sequence of stochastic processes.

(1.2)
[n]
n~V? [Z(w(x,-) - f wdr) + (nt = [nt])) (W Xjng1) — / ¢d7r} (t20)

converges weakly to a Brownian motion under the initial distribution .
Even though the main results in the article are stated and proved for the
one-dimensional case, it will be readily turned out that one can extend
the results to R*¥(k > 2) with more relaxed conditions on S.

2. Existence of a unique invariant probability

Define the transition operator T on the linear space B(S) of all real-
valued bounded measurable functions on S by

(21) (Th)@) = [ hy)plz, dy), e € B(S).
We shall say that p(z, dy) has the (weak) Feller-property if (Th) is con-
tinuous whenever h € B(S).

We make the following assumptions:
(A1) There exists z; and a positive integer ny such that

Q(Xno(z) <z§ V) >0, Q(Xp(z)>20 VI)>0.
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(A2) p has the Feller-property.

Let S C R!, being the state space of the process, be a closed interval
(not necessarily bounded) and let I be a set of continuous monotone
maps 7 on S into S.

Write
A = {(—o0,z]NS 1z = 3o},
Ay = {(—o00,2]NS:z < z0},
As = {[z,00)NS:z < zp},
Ay = {[z,00)NS:z >z},
A = U?=1

Then it is simple to check that y"1A C A Vv €T, outside of a set of
P-probability zero. On the space P(.5), define the distance d by

(22)  d(u,v) = sup{lu(A) — v(A)| - A€ A}, p, v € P(S)

The following result may be found in Bhattacharya and Lee (1988)
and its correction notes.

LEMMA 2.1. The space P(S) is complete under the distance d defined
by (2.2).

It is easily noticed that the lemma still works for our case also. One
of the results to be noted in this article is

THEOREM 2.1. If(A;), (A2) hold, then there exists a unique invariant
probability m for p(z, dy).

For the proof, in despite of differences in situations, one may follow
the similar ways found in Bhattacharya and Lee (1988), and here we
present a sketch of the proof, including key steps.

First, we note that, by (2.2), the map 4 — po~v~! is a contraction.
Define the (adjoint) operator 7* acting on P(.S) by

TwE) = [ bl Bud).
It follows that ;1 — T™u is a contraction in metric d. Write

o= {0 1 %m0) € T™59me -+ m(S) C (—00, Zo]}
Lo = {(7, " 1Y) € T™5 g+ - - M(S) C [0, 00)}
Then

(10 (Yngy =+ 7)™ )(A) = (¥ 0 (Yng, =+, 1) ' )(A) =0
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if yeI'y and Ae A

if vy€Tly and A€ .A2

if yel' and A€ A

or

if yel'y, and A€ A; where v= (71, , M)

Therefore, for A € A; U Ay,
IT"™(A) — T"™v(A)]

(23) < /m |1(Otmg == 1) 7 A) = v((mg -+ - 1) THA) Py - - - dyy)

< / I/‘((’Yno v '71)—1A) = U((Ynp - 'Yl)_lA)i P™(dvy; -+ - dvg,)
™o\l ,
< (1= P(Ty)d(u, v).
For A € A; U Aj3, similarly,
(T (A4) = T™0(4)] < (1 P™(Ty))d(s,v).
Combining (2.3), (2.4),
(24) AT, T™v) < max {1 = P™(y),1— P(Ty) bd(u, v).

(2.5) and the fact that p — T*pu is a contraction in metric d together
imply

d(T*"u, T*™v) < 5["/"°]d(u, v), Yfn=12, ..,
where [n/ng] is the integer part of n/ng, and § = max{1 — P™(T;), 1 —
P™(I'9)}, which is less than 1.
For n' > n, one has

(2.5) d(p™(z, dy), p™(z,dy)) = d(T*"p, T*"v) < g/l
with p = 8, (point mass at ) and v = T*"="§,.

Hence, p®™(z, dy) is a Cauchy sequence in the metric d. Let 7 be its
limit, which exists by Lemma 2.1.
Then 7 is uniform in z and letting ' — oo in (2.6), we see that

sup d(p(")(r, dy), m(dy)) < §/ml 0 asn — oo.
z€S
Therefore, p™(z, dy) converges weakly to the same probability measure

nw(dy) on S for every € S. Since p has the Feller property, it is trivial
to show that 7 is invariant.
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If 7/ is another invariant probability, then T*"n’ = 7', which implies
d(r',m) = d(T""n',7) = 0 as n — oo.

Therefore, d(n',m) = 0, so that 7’ = 7.

3. Some results on the functional central limit theorem un-
der irreducibility

As an example of the process X, considered in the previous sections,
which is generated by successive iterations of an i.i.d. sequence of ran-
dom maps, on a probability space, consider the following process

(3.1) Xny1 = f(Xn) +enn (n20),

which is generated by the random maps «, defined by z — a,z =
f(z)+¢€, (n>1), where f is real-valued Borel measurable and con-
tinuous monotone on S, {¢, : n > 1} is a sequence of i.i.d. random
variables and X is arbitrarily prescribable real-valued random variable
independent of {e, : n > 1}.

With the assumptions (A;) and (A;) hold, as though there exists a
unique invariant for the process, the transition probability p may not
be -irreducible for any nonzero o-finite measure ¢, not even strongly
mixing. Indeed, the tail o-field may not be nontrivial. Here, the irre-
ducibility plays a role, under which it enables us to see these properties
hold. A ¢-irreducible aperiodic Markov process with transition proba-
bility p(z,dy) is said to be geometrically (Harris) ergodic if there exists
a probability measure 7w such that

(3.2)  |[p™(z,dy) — 7(dy)|| — O exponentially fast asn — oo,
vz € R.

Here || - || denotes the variation norm on the Banach space of finite
signed measure on (R!, B(R?!)).

Recently there have been considerable works on kth-order (k > 1)
nonlinear autoregressive models, most of which provide some verifiable
criteria for geometric ergodicity (see, e.g., Chan and Tong (1985),
T j¢stheim (1990), Bhattacharya and Lee (1995a), (1995b), Lee (1998)).
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If (3.2) holds, then 7 is necessarily the unique invariant probability for
p(z, dy), and the process having 7 as the initial distribution is stationary.

We assume that the process (3.1) is uniformly (geometrically) ergodic,
that is, sup,cg ||[p™(z, dy) — 7(dy)|| goes to zero exponentially fast as
n — o0, and that Xy has the unique invariant 7 as its distribution. Note
that, by contractivity, the convergence automatically has geometric rate.
A set B € B(S) is said to be small (with respect to ) if ¢(B) > 0, and
for every A € B(S) with ©(A) > 0 there exists j > 1 such that

T€B

j
inf Zp(”)(z, A)>0.
n=1

It also turns out that uniform ergodicity can be characterized as the
smallness of the state space S, that is, a p-irreducible aperiodic Markov
process with transition probability p(z,dy) is uniformly ergodic if the
state space S is small.

Let 1 belong to the range (C L? = L?(S,)) of the operator T'— I on
L?, where T is the operator defined by (2.1), and I is the identity. Then
the functional central limit theorem (FCLT), as stated in the following
proposition, holds for (1.2) (Gordin and Lifsic, 1978).

PROPOSITION 3.1. Assume p(z,dy) admits an invariant probability
m and, under the initial distribution 7, (3.1) is ergodic. Assume also

that ¥ = — 9 is in the range of I —T'. Then
[nt]
(33) Y W(X) =) + (nt — [nt]) (P (Xpug) = D) | (2> 0)
=0
converges weakly to a Brownian motion with mean zero and variance
parameter ||h||3 — ||Th|[3, where (I — T)h = 4, [nt] is the integer part
of nt and ¢ = [ ydr.

Our main result is the following theorem.

THEOREM 3.1. Assume that the process in (3.1) is uniformly (geo-
metrically) ergodic and that X, has the unique invariant 7 as its distri-
bution. Then for every ¢ in L*(S, ) such that [ dr = 0, ¢ belongs
to the range of I — T, i.e., (3.3) holds for every ¢ in L*(S, ) such that

Jdr =0.
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Proof. Given the one-sided (strictly stationary) process {X, : n >
0}, we can always construct a two-sided {X, : n = 0,:i:1,:i:2,-~-}
with the same finite-dimensional distribution. We may call {X,, : n =
0,£1,£2,---} the doubly infinite extension of {Xn n >0} on a prob—
ablhty space (Q, F, P).

For a < b, define F? as the o-field generated by the random variables
Xy -+, Xp: define F?_ as the o-field generated by --- , X,_1, X,: and
define F° as the o-field generated by X,, Xq11,- -

We claim that for each m (—co < m < oo) and for each n (n >
1), Ae F™, B € F,, together imply

(3-4) |P(AN B) — P(A)P(B)]| < ¢(n)P(A),

where ¢(n) is a nonnegative function of positive integers.

Let g(Xnin) denote E(Ig|F™i"), where Ip is the indicator function
of B. Then

B[ E(g(Xmin)lFT)] = ElE(Iag(Xmn)|FT0)]
E[149(Xmn))
E[119(Xm))

E[I,1g]

= P(ANB).

Il

On the other hand,

P(A)P(B)=E [IA / g(y)ﬂ(dy)] :
Therefore,
|P(Ar B) - P(A)P(B)|
=B ttaB 7R - B |14 [ atirmtan)|

— !E [IA (/ 9()p™ (=, dy) - / g (y)ﬂ(dy))”

< E[Lallglleollp™ (z, dy) — m(dy)|].

(3.5)
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Since the process {X,, : n > 0} is uniformly ergodic, there exist constants
e>0, 0<p<l,suchthat

1P (2, dy) — n(dy)|| < ep”
for all sufficiently large n, uniformly for z € S. Thus, taking €p™ as our
¢(n), we have shown that for every sufficiently large n, (3.4) holds, and
from the inequality of (3.5), a constant function ¢(n) can be taken for
the other finite many number of n’s, justifying our claim. Let 3 € 1+,
the set of all mean zero L?-functions. Then

1715 = EQE[(Xa)|Xo]}?)

(3.6) = E(E{E[{(Xn)| Xo]$(Xn)| Xo})
= E(E(Y{Xn)|Xo)¥(Xn)) = E(T™Y)(Xo)$(Xn))
< p(n)l1¥ll3

(by definition of the maximal correlation coefficient p(n)).

Now consider the function g(y) := — > oo (T™9)(y). Note that

llglls < S IT™ll2 < lblle 3 v/p(m) < oo,
n=>0 n=0

by the inequality (3.6). Hence g € L?(S, 7). But (T — I)g = 9. Hence
% is in the range of (T'— I). O

REMARK 1. The functional law of the iterated logarithm (FLIL) holds
under the additional assumption [ [¢|***dr < oo for some & > 0 (Bhat-
tacharya (1982)).

REMARK 2. As references for earlier work on a class of nonlinear au-
toregressive processes, see Bhattacharya and Lee (1988), and Nummelin
(1984), where they have provided some verifiable conditions under which
the functional central limit theorem (FCLT) holds for a class of functions
¥ in L2(RY, 7).
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