p-ADIC HEIGHTS

  • 발행 : 2000.01.01

초록

In this paper, for a given p-adic quasicharacter $c_{v}$ : $k_{v}$longrightarrow $Q_{p}$ satisfying a special condition, we will explicitly construct an admissible pairing corresponding to $c_{v}$. We define a p-adic height on the arbitrary abelian varieties associated to divisors and $c_{v}$ by using admissible pairings at every nonarchimedean places. We also show that our p-adic height satisfies similar properties of Neron-Tate's canonical p-adic height.t.ght.t.t.

키워드

참고문헌

  1. Math. USSR. Sb. v.12 The refined structure fo Neron-Tate height J. Manin
  2. Arith-metic and Geometry, Progress in Math. v.35 Cononical height pairing via bieχtentions B. Mazur;J. Tate
  3. Ann. Math. v.82 Quasi-fonctions et hauteurs sur les varietes abeliennes A. Neron
  4. Seminarie de theorie de nombres v.22 Construction de hauteurs archimediennes et p-adiques suivant la methode de Bloch J. Oesterle
  5. Progress in Math. J. Oesterle
  6. Math. USSR. Izvestija v.6 no.3 Neron pairing and quasicharacters J. G. Zarhin