Abstract
A biarc is a curve connecting two circular arcs with the constraints of tangent continuity so that it can represent the free form currie approximately connecting several biarcs with the tangent continuity. Since a biarc consists of circular arcs, the offset curve of the curve represented by biarcs can be easily obtained. Besides. if the tool path is represented by biarcs, the efficiency of machining is improved and the amount of data is decreased. When approximating a curve with biarcs, the location of the point where two circular arcs meet each other plays an important part in determining the shape of a biarc. In this thesis, the optimum point where two circular arcs meet is calculated using the tangent information of the curve to approximate so that it takes less calculation time to approximate due to the decrease of the number of iterations.