Abstract
In the restoration of degraded noisy motion blurred image, we have trade-off problem between smoothing the noise and restoration of the edge region. While the noise is smoothed, die edge or details will be corrupted. On the other hand, restoring the edge will amplify the noise. To solve this problem we propose an adaptive algorithm which uses I- H regularization operator for flat region and Laplacian regularization operator for edge region. Through the experiments, we verify that the proposed method shows better results in the suppression of the noise amplification in flat region, introducing less ringing artifacts in edge region and better ISNR than those of the conventional ones.
선형적인 움직임에 의하여 흐려지고 가산잡음으로 훼손된 영상을 복원할 경우, 잡음을 평활화하면 동시에 윤곽도 같이 평활화 되며, 윤곽을 복원하면 잡음도 동시에 강조되는 이중성을 지닌다. 이러한 문제점을 해결하기 위하여 본 논문에서는 평면에선는{{{{ {I-H}^{ } }} }}연산잔가 효과적이고 윤곽에서는 Laplacian 연산자가 효과가 있는 점을 이용하여 훼손된 영상의 평면영역에서는{{{{ {I-H}^{ } }} }}정칙화 연산자를 윤곽영역에서는 Laplacian 정칙화 연산자를 적응적으로 적용하는 알고리듬을 제안한다. 본 논문에서 제시한 복원방법을 실험결과를 통해 기존의 방법과 비교해보면 평면에서의 잡음의 평활화가 개선되고 윤곽에서의 리플잡음이 줄었음을 알 수 있다. 또한 이것은 우리의 시각이 가지는 평면에서의 잡음의 가시도에 따른 시각적인 효과가 개선되었음을 알 수 있었으며, 기존의 방법에 비해 더욱 우수한 ISNR을 얻을 수 있었다.