3GPP 시스템의 용량과 셀 커버리지 분석

Analysis on the Cell Capacity and Coverage of 3GPP systems

  • 양하영 (연세대학교 전기컴퓨터공학과 정보통신연구실)
  • 발행 : 2000.10.01

초록

이동 통신 가입자의 수가 폭발적으로 증가하는 상황에서 좋은 품질을 갖는 서비스를 제공하기 위해서는 새로운 Cell Planning 기법이 필요하다. 따라서 차세대 이동통신 시스템인 IMT-2000 망에서 적절한 Cell Planning 기법을 이용하여 계층 셀 구조를 구성하여만 정상적인 IMT-2000 서비스 제공이 가능할 것이다. 본 논문에서는 향후 서비스 될 제 3세대 이동통신 시스템인 IMT-2000(3GPP)의 권고안을 분석하여 셀 설계에 필요한 여러 파라미터를 살펴본다. 또한 IMT-2000 무선링크 분석을 위한 모델을 설정하고 수직적으로 유도함으로써 순방향과 역방향 링크 버짓, 시스템의 용량, Call Blocking 확률, Erlang Capacity, 셀 커버리지를 분석한다. 분석을 수행하는데 있어서 계층 셀의 구조와 사용자 수, 서비스의 종류, 지역 등 여러 가지 환경의 변화에 따른 설계의 방향을 제시하였다. 본 논문을 통해 IMT-2000 상용화 시 효율적인 Cell Planning 기법 제시 및 용량 극대화를 이룰 수 있을 것이다.

Recently, the mobile users seem to be rapidly increasing and then the capacity limit will be reached at close hand. In these situations, to provide them with good quality of service in the coming future, newly planned cell design is needed. In the next generation mobile communication systems, namely IMT-2000, good quality services will be possible only by designing the cell structure hierarchically with the help of appropriate cell planning. In the research process, the standardization reports on the future mobile cellular IMT-2000 system (3GPP) are investigated and the parameters, that are essential to cell planning, are also researched. Modeling of IMT-2000 radio link and the numerical analysis on that make it possible to calculate the forward/reverse link budget, system capacity call blocking probability Erlang capacity and cell coverage. In planning the cell of IMT-2000 system, various parameters are considered, such as hierarchical cell structure, number of users, data service forms and propagation area environments. From the results, efficient cell planning methods are proposed. Through this thesis efficient cell planning and maximum capacity will be achieved in the beginning of commercial IMT-2000 service.

키워드

참고문헌

  1. 3rd Generation Partnership Project (3GPP) Technical Specification
  2. VTC'96 Channel Allocation and Power Settings in a Cellular System with Macro and Micro Cells Using the Same Frequency Spectrum Almgren, M.(et al.)
  3. IEEE Trans. Communs. v.47 no.4 Introducing Microcells into Macrocellular Networks : Case Study R. Coombs;R. Steele
  4. IEEE Trans. on VT v.VT-29 Empirical Formular for Propagation Loss in Land Mobile Radio Services M. Hata
  5. IEEE Trans. on AP v.AP-32 Propagation Factors Controlling Mean Field Strength on Urban Streets F. Ikegami;S. Yoshida;T. Takeuchi;M. Umehira
  6. Recommendation ITU-R M.1225, Guidelines for Evaluation of Radio Transmission Technology for IMT-2000
  7. IEEE Trans. On VT. v.40 no.2 On the Capacity of a cellular CDMA system Klein S. Gilhouson;Irwin M. Jacobs;Roberto Padovani;Andrew J. Viterbi;Lindsay A. Weaver;Charles E. Wheatly III
  8. IEEE Comm. Mag. Multitier Cell Design Xavier Lagrange
  9. IEEE Trans. Vehicle. Technol. v.40 no.2 Overview of cellular CDMA W. C. Y. Lee
  10. CDMA System Engineering Handbook J.S.Lee
  11. IEEE Journal on Selected Areas in Comm. v.11 no.6 A Microcell/Macrocell Cellular Architecture for Low and High-Mobility Wireless Users Chin-Lin;Larry J. Greenstein;Richard D. Gitlin
  12. CDMA System Engineering Qualcomm.
  13. IEEE JSAC v.11 Erlang Capacity of a Power Controlled CDMA Systems Viterbi, A.M.;A. J. Viterbi