참고문헌
- Journal of the Royal Statistical Society v.53 Posterior Bayes factor (with discussion) Aitkin;M.
- Bayesian Statistics v.4 On the development of the reference prior mwthod. Berger;J.;J.;Bernardo;J.M. Bernardo;J.O. Berger;A.P. Dawid;A.F.M. Smith
- Journal of the American statistical Association v.91 The intrinsic Bayes factor for model selsction and prediction Berger;J.O.;Pericchi;L.R.
- J. Roy. Statis. Soc. v.41 Reference posterior distributions for Bayesian inference(with Discussion) Bernardo;J.
- Assison-Wesley Bayesian Inference in Statistical Analysis Box;G.;G. Tiao
- Technometrics v.29 A Bayesian approach to the estimation of variance component for the unbalanced one-way rendom model Chaloner;K.
- Journal of American Statistical Association v.89 Importance-weighted marginal Bayesian posterior density estimation Chen;M.H.
- Communications in Statistics v.27 no.9 Bayesian approach to estimation of intraclass correlation using reference prior Chung;Y.;Dey;D. K.
- In: Bayesian Statistics 5(J. Barnardo. et al,eds.) Discussion of intrinsic Bayes factor for linear model Dey;D. K.
- In: Bayesian statistics 4 (J. Bernardo,et. al. eds.) Model determination using predictive distributions with impletation via sampling-based mothods Gelfand;A. E.;Dey;D. K.;Chang;H.
- Journal of the American Statistical Association v.85 Sampling based approach to calculating marginal densities Gelfand;A. E.;Smith;A.F.M.
- Comm. Statist. Theory and Methods v.19 A comparison of Bayes and maximum likelihood estimation of the intraclass clrrelation coefficient Plamer;J.L.;L.D. Broemeling
- Journal of the Royal Statistical Society v.52 The conditional presicitive ordinate for the normal distribution Pattit;L.I.
- Journal of the Royal Statistical Society v.77 Measuring the effect of observations on Bayes factors Pattit;L.I.;Young;K.D.S.
- Journal of American Statistical Association v.90 The reference prior Batesian analysis for normal mean produsts Sun D.;Ye. K.
- Journal of Statistical Planning Inference v.41 Bayesian reference prior analysis on the ration of variances for the balanced one-way random effect model Ye;K.