Abstract
A spectrum minimizing the frequency-domain Kullback-Leibler information number has been proposed and used to modify a spectrum estimate. Some numerical examples have illustrated the KL spectrum estimate is superior to the initial estimate, i.e., the autocovariances obtained by the inverse Fourier transformation of the KL spectrum estimate are closer to the sample autocovariances of the given observations than those of the initial spectrum estimate. Also, it has been shown that a Gaussian autoregressive process associated with the KL spectrum is the closest in the timedomain Kullback-Leibler sense to a Gaussian white noise process subject to given autocovariance constraints. In this paper a corresponding conditional probability theorem is presented, which gives another rationale to the KL spectrum.