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A Probabilistic Interpretation of the KL Spectrum
Seongbaek Yi! and ByoungSeon Choi?

ABSTRACT

A spectrum minimizing the frequency-domain Kullback-Leibler informa-
tion number has been proposed and used to modify a spectrum estimate.
Some numerical examples have illustrated the KL spectrum estimate is su-
perior to the initial estimate, i.e., the autocovariances obtained by the in-
verse Fourier transformation of the KL spectrum estimate are closer to the
sample autocovariances of the given observations than those of the initial
spectrum estimate. Also, it has been shown that a Gaussian autoregres-
sive process associated with the KL spectrum is the closest in the time-
domain Kullback-Leibler sense to a Gaussian white noise process subject to
given autocovariance constraints. In this paper a corresponding conditional
probability theorem is presented, which gives another rationale to the KL
spectrum.

Keywords: KL spectrum; Conditional probability density; Autoregressive pro-
cess; Local limit theorem

1. INTRODUCTION

Consider a second-order stationary time series {Y;}. Its autocovariance func-
tion (ACVF) and spectrum are defined by

o(j) = Cou(Y, Yy ), j=0,1,...,
1 o0
S(A) 5 1—2_ o(l)exp(—iXl), —-m <A<,

respectively. It is known by Choi (1990) that the spectrum minimizing the
frequency-domain KL information number
. v A
I(S5;S) = S(A)1n S:L)—d)\
- S(A)
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subject to the first (p + 1) autocovariance constraints

0(0) =ap,0(l)=ay,...,0(p) = a,

equals
S(A)
Skr(A)=C - , = -1,
R =Ty e
where the coefficients ¢, ¢, ..., ¢, and the positive constant C' are the solutions

of the simultaneous equations
™
Skr(A)exp(irj)dA =a;, j=0,1,...,p.

-
It is called the KL spectrum. If {Y;} is an ARMA(m —p, ) process (m > p), then
the KL spectrum of {¥;} subject to the first (p + 1) autocovariance constraints
equals the spectrum of an ARMA(m, ¢) process. Thus, it is a generalization of
a large family of spectrums including the maximum entropy spectrum and the
ARMA spectrum.

The KL spectrum can be used for modifying spectrum estimates and corre-
sponding time domain models to obtain revised estimates, which are more perti-
nent to the given observations than the initial estimates. Let {y;,yz, - - YN} be
an N-realization of the stationary process, and define the sample ACVF {6(5)}
as an estimate of the ACVF by

N=j
iy A 1 - - .
Tot=1

where ¥ = Zé\il Y;/N. Also, let §,(}) be an estimate of the spectrum. If the
estimates do not satisfy

Sy(N exp(iAj)dr = 6(5), j=0,1,...,p,

-7

then we would rather use the KL spectrum estimate,

. . Sy (A :
SKL(/\):C P y( ) ; 2’ $o = -1,
| 2o1=0 #1exp(—iAl) |
instead of the initial estimate Sy()\). Here ¢1, ¢, - - - ,q@,, and C satisfy

Skr(X) exp(irj)dA = &(j), j=0,1, sy D

-
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Particularly if the ARMA model is initially used to estimate a spectrum, then
the KL spectrum estimate can be easily calculated as follows. Let €1,62,...,EN
be the residuals from the ARMA model associated with the initial spectrum
estimate Sy()\). If it is a good estimate, then the residuals should not be serially
correlated. However, if the sample autocovariances of the residuals are not near 0
for some lags greater than 0, the spectrum estimate should be modified. Assume
that p is the largest one among the lags whose autocovariances are significantly
different from 0. Let
N-1

Z 1 NZ‘P
N E €t = &g, =7 étét+1 =y ..y 'N - étét-{-p = Op.

Then, <f>1, b2, ... ,d)p satisfy the Yule-Walker equations

Z¢la|j—l|:aj7 J=L2,....p

=1
By solving the equations using the Levinson-Durbin algorithm, we obtain the KL
spectrum estimate
é Sy(Y)
IZ o @1 exp(—iAl) |2
As an example, we generate 200 observations from the ARMA(2,1) model

Skr(A) = $o = —

Yt = 1.3yt_1 - 0.6yt_2 + € — 0.86;-1,

where {e;} is a Gaussian white-noise process with variance 1. When the obser-
vations are fitted to an ARMA (2, 1) model, the estimated model is

yi = —0.0677 — 0.4979y,_1 + 0.4242y, 5 + é, + 0.9835¢;_1.

The ACVF and the partial autocorrelation function (PACF) of the residuals due
to the estimated model show that they are far from a white noise process. More-
over the modified portmanteau statistic is 55.9 with 9 degrees of freedom (DF). In
order to modify the estimate using the KL spectrum theory, we should determine
the AR order of the residuals {é;}. Applying the AIC, the BIC and the CAT
criteria, we have concluded that the residuals be from an AR model of order 3,
i.e., AR(3) model. By the KL spectrum theory, we fit the observations {ys} to
an ARMA (5, 1) model, and obtain the modified model

yr = —0.0319+ 1.0180y,_; — 0.3869y;_2 — 0.1456y,3
— 0.0548y;_4 — 0.0086y,_5 + &, — 0.6083¢,_1.
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The ACVF and the PACF of the estimated residuals show the randomness. Also,
the modified portmanteau statistic is 7.6 with 6 DF. Thus, the KL model is more
relevant to the observations than the initially estimated model. Since the tratio
of the 5th AR coefficient is -0.07, we have tried to fit the observations to an
ARMA(4,1) model. But we have got a message from the program SAS/ETS
that the model cannot be estimated with these data. We have also tried to fit
the observations to an ARMA(3,1) model and have realized that the residuals
due to the estimated ARMA(3,1) model are far from a white-noise process. The
corresponding modified portmanteau statistic is 40.4 with 8 DF. More numerical
examples in Choi (1990) have illustrated that the KL spectrum estimate Spp,(A) is
superior to the initial estimate Sy()\), t.€., the autocovariances obtained through
the inverse Fourier transformation of the KL spectrum estimate are closer to
the sample autocovariances of the given observations than those of the initial
spectrum estimate.

Choi (1991) has shown that the Gaussian AR(p) process is the closest in
the time-domain Kullback-Leibler sense to independently, identically and nor-
mally distributed random variables subject to the first (p + 1) autocovariance
constraints. Thus, if the residuals found from parametric time series modeling
or regression modeling are autocorrelated, then it would be better to regard
them as from an AR model. It implies that the KL spectrum estimate is theo-
retically more reasonable than the initial spectrum estimate in the time-domain
Kullback-Leibler sense as well as in the frequency-domain Kullback-Leibler sense.
The purpose of this paper is to present a probabilistic assessment of this result.

2. THEOREM AND PROOF

Throughout this paper we assume that the stochastic proces {Y:} is stationary
and regular with zero mean. Also, assume that for fixed N and p, the sequence

is circular, i.e., Yn_p4y = V7, YN pt2=Ys, ..., ¥y = Y,. Let
1 N
6(j) =6(-j) = N—_pt_zp;lYthﬂ' y J=0,1,....

Also, let ¥ be a j x j Toeplitz matrix with (r,s) element &(r — s). If 5(0) =
ag,d(l) = ay,...,5(p) = ap, where g, Qy,...,0qp are given constants, and if
Ap41 is the (p+ 1) X (p+ 1) symmetric Toeplitz matrix whose (7, j) element is
@|;—j|, then the regularity of the process implies A, is positive definite. Thus
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the system of Yule-Walker quations,
p
Zd)jau_ﬂ:—az, 121,2,...,p,
=1
has the unique solution {¢1, @2, ..., $p}, and then we can define

P
az=a—t:—z¢jat—j, l=p+1,p+2,...,
J=1

p
ot ==Y dja_;, ¢o=-1.
J=0

For j = 1,2,..., let A; be the j x j symmetric Toeplitz matrix whose (r,s)
element is @,_,. For any N-dimensional vector zy = (21,22, .., zny)t and any
1<l<m<N,let

z] = (213221"'azl)ta
Zim = (224100 2Zm),
* t
2] = (EN=141,EN-142,- - ZN)"

If Zn has the normal distribution with mean w and covariance matrix ¥, then
for n < N, the probability density function of Zy and the conditional probability
density function of Z,, given A are denoted by ¢(zn;u, Xn) and P(zn|Aru, 2),

respectively.
Lemma 1. Let {Y},Y,,---,Yxn} be from a stationary Gaussian AR(k) model
(k < p), t.e.,

Y, = B1Yic1+ BoYeo+ -+ BYix + B, t=k+1,k+2,... N,

where {E;} is a sequence of independent and identically distributed normal ran-
dom variables with means 0 and variances o%. Then, the conditional probability
density funtion of yy given y, = yj, is

1 1 et N-p P P ]
= T AT P | 2 Yr T ggr 2 2 ool

Lemma 1 can be easily proved using the joint probability density of the Gaus-
sian AR(p) process. Applying the factorization theorem to Lemma 1, we know
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that ¥, 5(0),5(1),...,5(p) are jointly sufficient as long as the process is circu-
lar. Thus, under the circularity assumption, the conditional probability density
function of ¥y given Y, 5(0),5(1),...,5(p) does not depend on the parameters
81,82, .., Bk, 0% Thus, for any Xp,

17"'1&(1)) - apvanN)
1--,0(p) = ap; 0, Ay).

Plyn | Yp = Y; =@p,6(0) = ag
= ¢yny Y, = Y; =®p,6(0) = ap,d(1) =

Theorem 1. Let {Y; |t =---,~1,0,1,---} be from a stationary Gaussian
AR(k) model (k < p). For positive integers Ny and N,, let

Ny
1
F(1 ) =(—-1) = —— YY 'y ‘:0’17""
ob(J) = Gb(=J) N1+N2_pz=—Nzl;rp+1 s

Then, the conditional probability density function of ¥ 5, (M > p) given
&b(O) = g, ..., &b(p) = apa Y—N;-I-l = YNz—p-l-l» ey Y—N1 +p — Y’Vg
tends to ¢(yp; 0, Aps) as Ny = 0o and Ny — oo .

Proof. For @, = (r1,22,...,2,)% let

Tb:{&b(j):aja jzoalv"-vp}v
Fb:{Y—N1+j:$j7 j:1’27"'1p}a
Eb: {YNg—p+j =Ty, ]: 1’2""51)}7

Gy = TbﬂFbﬂEbv

N = min(Ny, Ny).
Lemma 1 implies

d(ym | Gb;0,TN) = d(ypr | Gi; 0, Ap),
which equals
¢(yMa Tb7 Fbv Eb, 0’ AN)

¢(Tba Fb7 Eba 07 AN)

{¢(Tb | Yars Foo Eb; 0, Ay) } {c;S(yM, Fy, Ep; 0, Ay) }
&(Ty | Fp, Ep; 0, AN) (Fp, Ep; 0, AN)
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A local limit theorem of the sample autocovariances (see, e.g., Theorem 2 of
Taniguchi (1986)) implies that the first fraction of the RHS tends to 1 as N — oo.
Also,

lim d)(yM’FbaEb;OvAN)
Nooo  ¢(Fy, Ep; 0, Ay)
= lim ¢(yM , Fy, Ey; 0, AN)
N—)oo
= ¢(yM;01ANf)7

where the last equality holds by the well-known properties about conditional and
marginal distributions of multivariate normal random vectors (see, e.g., Morrison
(1990)) and lim; o oy = 0.

3. CONCLUDING REMARKS

From an information theoretic point of view, the limiting probability density
function ¢(yn; 0, Ay) in Theorem 1 is asymptotically the closest in the Kullback-
Leibler sense to the joint probability density function of a Gaussian AR(k) pro-
cess (k < p) among all the probability density functions satisfying the empirical
constraints 63(j) = ¢, 7 = 0,1,...,p. Of course, a white noise process can be
regarded as an AR(0) process, and then Theorem 1 can be applied toit. It can be
shown using a similar method to Csiszar, Cover and Choi’s (1987) that the tran-
sition probability function ¢(y,.sar | ¥,:0,XN) is the closest in the Kullback-
Leibler sense to the transition probability function ¢(y, 1 s | ¥,; 0, Ax) subject
to the autocovariance constraints

0(0) = ag,0(l) =aq,...,0(p) = ap.

Thus, Theorem 1 is a generalization of Van Campenhout and Cover’s (1981) con-
ditional limit theorem about Sanov’s large deviation problem and gives another
rationale to the KL spectrum. If we modify initial estimates of the spectrum
and the corresponding ARMA model based on the KL spectrum theory, then
the AR order always increases. Thus, it is possible that the modified spectrum
estimate may have too many peaks. However, we can reduce both the AR and
the MA orders by the cancellation law, 7.e., deleting common factors of the AR
and the MA characteristic functions. For this purpose, we try to fit the ob-
servations to ARMA(p — 1,¢ — 1) model if the KL spectrum is obtained by an
ARMA (p, ¢) model. In case of the example in Section 1, we fit the observations
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to an ARMA(4,0) model and obtain the following
ye = —0.0597 + 0.4570y;—1 — 0.0918y;_o — 0.1873y;—3 — 0.2269y, 4 + €.

The corresponding modified portmanteau statistic is 9.6 with 8 DF. Due to the
principle of parsimony we would rather use the ARMA(4,0) model than the
ARMA(5,1) model, the AR and the MA characteristic functions of which have
(1 — 0.612) as an approximate common factor.
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