Improved Refolding of Recombinant Human Proinsulin from Escherichia coli in a Two-stage Reactor System

  • Published : 2000.02.01

Abstract

An improved method of refolding recombinant human proinsulin from E. coli was presented. It was based on a two-stage stirred tank reactor in which denatured proinsulin-s-sulfonate was mixed instantaneously with a reaction buffer in the first stage reactor, and then fed to the second stage reactor. The mixture was stirred further for a total of 30h in the second stage reactor. In this system, unfavorable effects present due to the increase in reaction volume and protein concentration for protein refolding, which becomes significant in a large-scale operation, were avoided. Refolding yields of over 80% was obtained for achieving reaction volume of upto 50 l at protein concentration of 1 mg/ml. The optimum urea concentration was 1M. Refolding yield at the 1-1 reaction volume and protein concentration of 0.5mg/ml was increased about 2.5-fold, compared to that in a batch reactor. By increasing protein concentration in a two-stage refolding reaction, the cost for insulin production could be reduced, therefore, making this process economical.

Keywords

References

  1. J. Biotech. v.52 Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies Arora, D.;N. Khanna.
  2. Anal. Biotech. v.52 A method for increasing the yield of properly folded recombinant fusion proteins:Single0chain immunotoxins from renaturation of bacterial inclusion bodies Buchner, J.;I. Pastan;U. Brinkmann
  3. Proc. Natl. Acad. Sci. v.81 Generatio of anitibody activity from immunoglobylin polypep;tide chains produced in Escheichia coli Cabilly, S.;A. D. Riggs;H. Pande;J. E. Shively;W. E. Holmes;M. Rey;L. J. Perry;R. Wetzel;H. L. Hoyneker.
  4. Diabetes Care v.4 Chemical, physical, and biologic properties of biosynthetic human insulin. Chance, R. E.;E. P. Kroeff;J. A. Hoffmann;B. H. Frank.
  5. Folding vs aggregation. Biotechnol. Prog. v.14 Oxidative renaturation of hen egg-white lysozyme Clark, E. D. B.;D. Hevehan;S. Szela;J. M. Reddy
  6. Bio/Technol. v.8 Cosolvent assisted protein refolding. Cleland, J. L.;D. I. C. Wang
  7. Biotechnol. Bioeng v.41 Isolation renaturation and formation of disulfide bonds of eukayotic proteins expressed in Esherichia colias inclusion bodies Fisher, B.;I. Summer;P. G.oodenough
  8. Process for prodicing and insulin precursor. v.4 no.430 Frank, B. H.
  9. Bio/Technol. v.5 Recombinant human insulin-like growth factor expressed in Escherichia coli Furman, R. C.;J. Epp;H. M. Hsing;J. A. Kokins;G. L. Long;L. G. Medelson;B. Schnoner;D. P. Smith;M. C. smith
  10. European patent EP v.0 no.055 Human proinsulin and analogs there of and method of preparation by microbial polypeptide expression and conversion threof to human insulin Goeddel, D. V.;D. G. Kleid;K. Itakura
  11. Proc. Natl. Acad. Sci. v.76 Expression in Escherichia coli of chemically synthesized genes for human insulin Goeddel, D. V.;D. C. Kleid;F. Bolivar;H. L. Heyneker;D. G. Yansura;R. C.rea;T. Hirose;A. Krazewski;K. Itakura;A. D. Riggs
  12. Biotechnol. Bioeng. v.35 Protein refolding in reversed micelles Hagen, A. J.;T. A. Hatton;D. I. C. Wang
  13. Biotechnol. Appl. Biochem. v.20 Effect of environment on insulin-like growth factor Ⅰ refolding selectivity. Hart, R. A.;D. M. Giltinan;P. M. Lester;D. H. Reifsnyder;J. R. Ogez;S. E. Bulider
  14. J. Biol. Chem. v.246 Studies on the conversion of proinsulin to insulin Kemmler, W.;J. D. Peterson;D. F. Steiner
  15. J. Microbiol. Biotechnol. v.7 Fed-batch fermentations of recombinant Escherichia coli to produce Bacillus macerans CGTase Kim, C. S.;C. I. Kim;J. H. Seo;K. H. Choi;Y. C. Park
  16. J. Ferment. Bioeng. v.70 Glucose feeding stategy accounting for the decreasing oxidative capacity of recombinant Escherichia coli in fedbatch cultivation for phenylalanine production Konstantino, K. B.;N. Nishio;T. Yoshida
  17. Biotechniques v.3 Protein solubility, protein modifications and profein folding Light, A.
  18. J. Microbiol. Biotechnol. v.6 Large-scale recovery of recombinant protein inclusion bodies expressed in Escherichia coli Middelberg, A. P. J.
  19. Bio/Technol. v.7 Protein folding intermediates and inclusion body formation Mitraki, A.;J. King
  20. Adv. Biochem. Eng. Biotechnol. v.56 Inclusion bodies and purification of proteins in biologically active forms Mukhopadhyay, A.
  21. TIBTECH. v.12 Engineering proteins to facilitate bioprocessing Nygren, P.-A.;S. Stahl;M. Uhlen.
  22. J. Biol. Chem. v.253 The renaturation of reduced chymotrypsinogen A in guanidine HCI. rDFOLDING VERSUS AGGREGATION Orsini, G.;M. E. Goldberg.
  23. Biotechnol. Bioeng. v.35 Glucose-limited fed-batch cultivation of Escherichia coli with compyter-controlled fixed growth rate Paalme, T.;K. Tiisma;A. Kahru;K. Vanatalu;R. Vilu.
  24. Bio/Technology v.9 Facilitated in vitro refolding of human recombinant insulin-like growth factor 1 using a solubilizing fusion partner. Samuelsson, E.;H. Wadensten;M. Hartmanis;T. Moks;M. Uhlen.
  25. J. Biol. Chem. v.250 Refolding of reduced, denatured trypsinogen and trypsin immobilized on agarose beads. Sinha, N. K.;A. Light.
  26. FEBS Lett v.443 Artificial chaperonig of insulin, human carbonic anhydrase and hen egg lysozyme using linear dextrin chains. Sivakama, S. C.;B. Raman;D. Balasubramanian.
  27. Process Biochem. v.31 Effective refolding of fully reduced lysozyme with a flow-type reactor Terashima, M.;K. Suzuki;S. Katoh.
  28. Gene v.16 Expression in Escherichia coli of a chemically synthesized gene for a "mini-c" analog of human proinsulin Wetzel, R.;D. G. Keid; R. Crea;H. L. Heyneker;D. G. Yansura;T. Hirose;A. Kraszewski;A. D. Riggs;K. Itakura;D. V. Goeddel.
  29. J. Ferment. Bioeng. v.81 Regulation of trp promoter for production of bovine somatoropin in recombinant Escherichia coli fed-batch fermentation. Yoon, S. K.;W. K. Kang;T. H. Park
  30. Biol. Cell. v.71 Protein folding in vitro and in the cellular environment You, J. M.;J. M. Betton.