• Title/Summary/Keyword: two-stage stirred tank reactor

Search Result 6, Processing Time 0.02 seconds

Improved Refolding of Recombinant Human Proinsulin from Escherichia coli in a Two-stage Reactor System

  • Phue, Je-Nie;Oh, Sung-Jin;Son, Young-Jin;Kim, Yong-In;Kim, Kyung-Hwan;Kim, Jung-Woo;Hong, Chung-Il;Chung, In-Sik;Hahn, Tae-Ryong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.75-80
    • /
    • 2000
  • An improved method of refolding recombinant human proinsulin from E. coli was presented. It was based on a two-stage stirred tank reactor in which denatured proinsulin-s-sulfonate was mixed instantaneously with a reaction buffer in the first stage reactor, and then fed to the second stage reactor. The mixture was stirred further for a total of 30h in the second stage reactor. In this system, unfavorable effects present due to the increase in reaction volume and protein concentration for protein refolding, which becomes significant in a large-scale operation, were avoided. Refolding yields of over 80% was obtained for achieving reaction volume of upto 50 l at protein concentration of 1 mg/ml. The optimum urea concentration was 1M. Refolding yield at the 1-1 reaction volume and protein concentration of 0.5mg/ml was increased about 2.5-fold, compared to that in a batch reactor. By increasing protein concentration in a two-stage refolding reaction, the cost for insulin production could be reduced, therefore, making this process economical.

  • PDF

Acidogenesis of Lipids-Containing Wastewater in Anaerobic Sequencing Batch Reactor (혐기성 연속 회분식 반응조를 이용한 지질 함유 폐수의 산발효 특성)

  • Kim, Sang-Hyoun;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1075-1080
    • /
    • 2009
  • The partial lipid degradation with the saturation of double-bond at the acidogenesis stage is known to help subsequent methanogenesis during anaerobic digestion. Acidogenic reactions in an anaerobic sequencing batch reactor (ASBR) and a continuously stirred tank reactor (CSTR) were carried out to compare their performances. A mixture of two unsaturated (oleate and linoleate) and two saturated (palmitate and stearate) long-chain fatty acids (LCFAs) was used as a model substrate. Biomass retention in the ASBR contributed to the enhanced performance at hydraulic retention time (HRT) below 15 hr. Biomass retention in the ASBR contributed to the enhanced performance compared to CSTR even at shorter HRT. ASBR would be a proper reactor configuration for the acidogenesis of lipid-containing wastewater.

Continuous Production of Sorbitol with Zymomonas mobilis in a Packed Bed Reactor (Zymomonas mobilis에 의한 Packed Bed Reactor를 이용한 연속적인 sorbitol의 형성)

  • 장기효;김영복장현수전억한
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.58-64
    • /
    • 1996
  • The purpose of this study is to develop a continuous process for sorbitol production using Zymomonas mobilis immobilized in K-carra-geenan. The glutaraldehyde cross-linking of toluene-treated cells immobilized in alginate or chitin showed high enzyme stability for long period. However, loss of enzyme activity was observed at 23% during 210h. In order to investigate the stability of glucose-fructose oxidoreductase of cethyltrimethylammoniumbromide (CT AB) treated cells, the long term continuous process was carried out with Z. mobilis immobilized in K-carrageenan in the continuous stirred tank reactor(CSTR) and the packed bed reactor. The continuous production of sorbitol with the immobilized CT AB permeabilized cells in packed bed reactor was more stable than in CSTR. Two stage continuous process with CT AB treated cells of Z. mobilis immobilized in K-carrageenan was carried out at various dilution rates. At the first stage, the productivity was increased up to 15 g/ $\ell$ -h as dilution rate increased and decreased over 0.32$h^{-1}$ of dilution rate. Similarly, maximum productivity obtained at the second stage was 22g/$\ell$ -h at 0.32$h^{-1}$

  • PDF

Development of Two-stage CSTG/TBF System for the Cometabolic Degradation of Gas-phase TCE by Burkholderia cepacia G4 (Burkholdera cepacia G4를 이용한 기상의 트리클로로에틸렌의 공대사적분해를 위한 2단계 CSTR/TBF 시스템 개발)

  • 이은열;박성훈
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.511-515
    • /
    • 2001
  • In this paper, we development and operated a two-stage continuous stirred tank reactor (CSTR)/trickling biofilter(TBF)system for the long-term continuous treatment of trichloroethylene (TCE) using Burkholderia cepacia G4. In this reactor system. CDTR with cell recycle from TBF was coupled to the TBF for the reactivation of the cells deactivated during TCE degradation. The critical elimination capacity was determined to be 25.3 mg TCE/L day and the reactor has been stably operated for more than 1 months, which clearly represented that CSTR/TBF system can be used for long-term treatment of TCE.

  • PDF

Gas-phase TCE Degradation in a Two-stage CSTR/TBR System Using Methylosinus trichosporium OB3b (Methylosinus trichosporium OB3b를 이용한 2단계 CSTR/살수층 생물막 반응기에서 기상의 trichloroethylene(TCE) 분해)

  • Choe, Yeong-Beom;Lee, Eun-Yeol;Park, Seong-Hun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.452-459
    • /
    • 1999
  • A two-stage continuous stirred tank reactor (CSTR)/trickling biofilter reactor (TBR) system was developed for the degradation of gas-phase trichloroethlene (TCE) using Methylosinus trichoporium OB3b. Mrthylosinus trichosporium OB3b was immobilized on activated carbons in TBR and the microbial growth reactor of a CSTR was coupled for the reactivation of the deactivated cells during TCE degradation. The effect of operation variables on TCE conversion and degradation rate were studied. At inlet TCE concentrations ranging from 10 to 80 $\mu$mol/L, TCE degradation rate was increased up to 525 mg TCE/Lㆍday with 75% conversion. The TCE degradation rates were also increased with increse in broth recycle flow rate, gas flow rate and dilution rate. When the temperature of TBR was changed from 3$0^{\circ}C$ to 15$^{\circ}C$, TCE degradation rate and TCE conversion were increased due to the enhanced TCE transfer from gas-phase. The two-stage reactor system was found to be stable and has been operated for more than 270 days.

  • PDF

Evaluation of Biocatalyst and Bioreactor System for the Continuous Treatment of Trichloroethylene (미생물 생촉매를 이용한 Trichloroethylene 연속처리용 생물반응기 시스템 평가)

  • 이은열
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.970-975
    • /
    • 2003
  • Microbial trichloroethylene (TCE) degradation using trickling biofilter (TBF) is a cost-effective treatment method, in which monooxygenase (MO) fortuitously transforms TCE via cometabolism. Simple TBF, however, could not be stably operated for long-term treatment of TCE due to the contradictory characteristics of cometabolism. In this paper, microbial biocatalyst and biofilm reactor system, a two-stage continuous stirred tank reactor (CSTR)/TBF system using Burkholderia cepacia G4 and Methylosinus trichosporium OB3b, are evaluated for the long-term continuous treatment of TCE. The maximum TCE elimination capacities were in the range of 28 and 525 mg TCE/1$.$day. The reactor systems were stably operated for more than 3∼12 months.