References
- Ann. Mat. Pura. Appl. v.93 On the inversion of some differentiable mappings with singularities between Banach space A. Ambrosetti;G. Prodi
- Annali Scu. Norm. Sup. Pisa v.4 Chacterization of range of some nonlinear operators and applications to boundary value problems H. Brezis;L. Nirenberg
- J. Diff. Eq. v.69 no.3 Generalized Ambrosetti-Prodi conditions for nonlinear two-point boundary value problems R. Chiappinelli;J. Mawhin;R. Nugari
- Inter. Pub. John Wiley and Sons II Method of Mathematical Physics R. Courant;D. Hilbert
- Differential and Integral Equations v.1 no.1 A multiplicity result for periodic solutions of higher order orinary Differential equations S. H. Ding;J. Mawhin
- Bull. London Math. Soc. v.18 A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations C. Fabry;J. Mawhin;M. Nkashama
- Nonlinear Analysis, T.M.A. v.2 no.5 Generalized periodic solutions of nonlinear telegraph equations S. Fucik;J. Mawhin
- Lecture Note in Math. v.568 Coincidence Degree and Nonlinear Differential Equations R. G. Gains;J. Mawhin
- J. Math. Anal. Appli. v.148 no.2 Periodic-Dirichlet boundary value problem for semilinear dissipative hyperbolic equations N. Hirano;W. S. Kim
- Discrete and Continus Dynamical Systems v.2 no.2 Multiplicity and stability result for semilinear for semilinear parabolic equations
- Nonlinear Analysis v.26 no.6 Existence of stable and ubstable solutions for semilinear parabolic problems with a jumping nonlinearity
- Diff. Int. Eq. v.8 no.7 Multiple existence of periodic solutions for Lienard system
- Nonlinear Analysis, T. M. A. v.12 no.12 Boundary value problems for nonlinear telegraph equations with superlinear growth W. S. Kim
- Comm. KMS v.4 no.1 Boundary value problem for non-linear dissipative hyperbolic equations with superlinear growth nonlinearity W. S. Kim;O. Y. Woo
- Bull. KMS v.26 no.2 Periodic-Dirichlet boundary value problem for nonlinear dissipative hyperbolic equations at rersonance W. S. Kim
- J. Math. Anal. Appli. v.145 no.1 Double-periodic boundary value problem for non-linear dissipative hyperbolic equations
- Bull. KMS v.29 no.1 The asymptotic behavior of non-linear dissipative hyperbolic equations
- Int. J. Math. v.18 no.2 Existence of periodic solutions for nonlinear Lienard systems
- J. Math. Anal. Appli. v.197 Multiplicity results for Doubly periodic solutions of nonlinear dissipative hyperbolic equations
- J. Math. Anal. Appli. v.231 Multiplicity result for semilinear dissipative hyperblic equations
- J. Math. Anal. v.107 Multiplicity results for a class of semi-linear elliptic and parabolic boundary value problems A. C. Lazer;P. J. Mckenna
- in Dynamical Systems Periodic solutions of nonlinear telegraph equations J. Mawhin;Bednark(eds.);Cesari(eds.)
- Seminarire de mathematique, universite Catholique de Louvain Rapport no.54 Time periodic solutions of boundary value problems for nonlinear heat, telegraph and beam equations M. N. Nkashma;M. Willem
- Martinus Nijhoff Pub. Partial DIfferential Equations: time-perioldic solution O. Vejvoda