MULTIPLICITY RESULT FOR PERIODIC SOLUTIONS OF SEMILINEAR DISSIPATIVE HYPERBOLIC EQUATIONS WITH COERCIVE GROWTH NONLINEARITY

  • Kim, Wan-Se (Department of Mathematics Hanyang University)
  • Published : 2000.09.01

Abstract

The multiplicity if periodic sloutions of semilinear dissipative hyperbolic equations is treated

Keywords

References

  1. Ann. Mat. Pura. Appl. v.93 On the inversion of some differentiable mappings with singularities between Banach space A. Ambrosetti;G. Prodi
  2. Annali Scu. Norm. Sup. Pisa v.4 Chacterization of range of some nonlinear operators and applications to boundary value problems H. Brezis;L. Nirenberg
  3. J. Diff. Eq. v.69 no.3 Generalized Ambrosetti-Prodi conditions for nonlinear two-point boundary value problems R. Chiappinelli;J. Mawhin;R. Nugari
  4. Inter. Pub. John Wiley and Sons II Method of Mathematical Physics R. Courant;D. Hilbert
  5. Differential and Integral Equations v.1 no.1 A multiplicity result for periodic solutions of higher order orinary Differential equations S. H. Ding;J. Mawhin
  6. Bull. London Math. Soc. v.18 A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations C. Fabry;J. Mawhin;M. Nkashama
  7. Nonlinear Analysis, T.M.A. v.2 no.5 Generalized periodic solutions of nonlinear telegraph equations S. Fucik;J. Mawhin
  8. Lecture Note in Math. v.568 Coincidence Degree and Nonlinear Differential Equations R. G. Gains;J. Mawhin
  9. J. Math. Anal. Appli. v.148 no.2 Periodic-Dirichlet boundary value problem for semilinear dissipative hyperbolic equations N. Hirano;W. S. Kim
  10. Discrete and Continus Dynamical Systems v.2 no.2 Multiplicity and stability result for semilinear for semilinear parabolic equations
  11. Nonlinear Analysis v.26 no.6 Existence of stable and ubstable solutions for semilinear parabolic problems with a jumping nonlinearity
  12. Diff. Int. Eq. v.8 no.7 Multiple existence of periodic solutions for Lienard system
  13. Nonlinear Analysis, T. M. A. v.12 no.12 Boundary value problems for nonlinear telegraph equations with superlinear growth W. S. Kim
  14. Comm. KMS v.4 no.1 Boundary value problem for non-linear dissipative hyperbolic equations with superlinear growth nonlinearity W. S. Kim;O. Y. Woo
  15. Bull. KMS v.26 no.2 Periodic-Dirichlet boundary value problem for nonlinear dissipative hyperbolic equations at rersonance W. S. Kim
  16. J. Math. Anal. Appli. v.145 no.1 Double-periodic boundary value problem for non-linear dissipative hyperbolic equations
  17. Bull. KMS v.29 no.1 The asymptotic behavior of non-linear dissipative hyperbolic equations
  18. Int. J. Math. v.18 no.2 Existence of periodic solutions for nonlinear Lienard systems
  19. J. Math. Anal. Appli. v.197 Multiplicity results for Doubly periodic solutions of nonlinear dissipative hyperbolic equations
  20. J. Math. Anal. Appli. v.231 Multiplicity result for semilinear dissipative hyperblic equations
  21. J. Math. Anal. v.107 Multiplicity results for a class of semi-linear elliptic and parabolic boundary value problems A. C. Lazer;P. J. Mckenna
  22. in Dynamical Systems Periodic solutions of nonlinear telegraph equations J. Mawhin;Bednark(eds.);Cesari(eds.)
  23. Seminarire de mathematique, universite Catholique de Louvain Rapport no.54 Time periodic solutions of boundary value problems for nonlinear heat, telegraph and beam equations M. N. Nkashma;M. Willem
  24. Martinus Nijhoff Pub. Partial DIfferential Equations: time-perioldic solution O. Vejvoda