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MULTIPLICITY RESULT FOR PERIODIC
SOLUTIONS OF SEMILINEAR DISSIPATIVE
HYPERBOLIC EQUATIONS WITH
COERCIVE GROWTH NONLINEARITY

WAaN SE KM

ABSTRACT. The multiplicity of periodic solutions of semilinear dis-
sipative hyperbolic equations is treated

1. Introduction

Let R be the set of all reals and 2 C R™, n > 1, be a bounded
domain with smooth boundary O which is assumed to be of class C2.

Let @ = (0,27) x  and L%(Q) be the space of measurable and
Lebesgue square integrable real-valued functions on @ with usual inner
product < -,- > and corresponding norm || - ||2.

By Hj(£2) we mean the completion of C§(Q2) with respect to the
norm || - ||; defined by

lolft = [ 3 1D°0(@)dz
|| <1

H?(£2) stands for the usual Sovolev space ; i.e., the completion of C2({2)
with respect to the norm || - || defined by

18] = / S |D%g() 2 da.
a|<2

Let ¢ : R — R be a continuous function. Moreover, we assume that
there exist constants ag and by such that

(Hy) lg(u)| < aplul +by for all u € R.
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The purpose of this work is to investigate the multiplicity for periodic
solutions of the semilinear dissipative hyperbolic equations

2

(E) ﬁ% + %t—g — Ngu— Au+g(u) =h(t,z) in Q,
(B1) u(t,z) =0 on (0,2m) x 09,

(B2) u(0,2) = u(2m,z) on Q

where \; and )y denotes the first and second eigenvalues of —A with
zero Dirichlet boundary data and ¢ is the positive normalized eigen-
function corresponding to A; and h € L2(Q).

The purpose of this paper is to give a multiplicity result for semi-
linear dissipative hyperbilic equations. Orginally, the linear dissipa-
tive hyperbolic equations are derived from physical principle(see [4]).
The existence and asymptotic theory of dissipative hyperbolic equa-
tions have been developed by several authors for initial value prob-
lems, boundary value problems, or mixed problems. For information
on dissipative hyperbolic equations, we refer to [24]. On the existence
of doubly-periodic solutions of semilinear dissipative hyperbolic equa-
tions have been done by Mawhin [22], Fucik and Mawhin [7]. Mawhin
treat the existence of double-periodic solutions for semilinear dissipa-
tive hyperbolic equations of several types of g(u) with at most linear
growth in connection with the set £ = {k* — j2|k,j integers}. Fucik
and Mawhin consider also the existence double-periodic solutions of
seminear dissipative hyperbolic equations with nonlinear term of the
form g(u) = put — vu~ — ¢(u), where ¢ is a continuous and bounded
function, and p,v are real numbers related to the set X. In [9, 15],
the existence of solutions for Dirichlet-periodic problem for semilin-
ear dissipative hyperbolic equations at resonsnce, in [13, 14], the ex-
istence of Dirichlet-periodic solutions for semilinear dissipative hyper-
bolic problems with superlinear growth, in [16], the existence of double-
periodic solutions for semilinear dissipative hyperbolic equations with
non-decreasing type of non-linear term, in [19, 20], the multiple exis-
tence of double-periodic and Dirichlet-periodic problem, respectably,
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for semilinear dissipative hyperbolic equations and, in [17], the asymp-
totic behavior of Dirichlet-initial problem of semi-linear dissipative hy-
perbolic equations are disscused. Our result is related to the results in
[19, 20] which are so called the Ambrosetti-prodi type multiplicity re-
sult which has been initiated by Ambrosetti-Prodi [1] in the study of a
Dirichlet problem to elliptic equations and developed in various direc-
tions by several authors to ordinary and partial differential equations.
For more information on this problem for semilinear elliptic, parabolic
and ordinary equations, we refer to [3, 5, 6, 10, 11, 12, 18, and 21} and
their references.

In our result, we will trerat a multiplicity result for Dirichlet-periodic
solutions of semilinear dissipative hyperbolic equations in n-dimensional
space. we assume the coercive growth on g with restriction on the left-
hand and our proof based on Mawhin’s continuation theorem in [8].

2. Preliminary results

Let us define the linear operator

L :DomL C L}(Q) — L*(Q)

by
2 2 1 u 2 8%u 2
DomL = {u € L3((0,2m), H(®) N H}(@)|5; € I(Q), 55 € LX(Q),
u(0,z) = u(2m,z),x € Q}
and 5 o2
u u
Lu—ﬁaﬁ—W—Au——)\lu.

Using Fourier series and Parseval inequality, we get easily

8
< Lu, g BH [|L2 for all w € DomlL.

Hence kerL = ker(A + M\ I) = kerL* since A + M is self-adjoint
and ker(A + A\1I) is one space dimension generated by the eigenfunc-
tion ¢1. Therefore L is a closed, densely defined linear operator and
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Im(L) = [kerL]t; ie., L?(Q) = kerL@ImL. Let’s consider a conti-
nous projection P; : L?(Q) — L?(Q) such that ImP; = kerL. Then
L?(Q) = kerL @ kerP;. We consider another continuous projection
P, : L*(Q) — L*(Q) defined by

(Pyh)(t, ) // (t,z)p(z)dtdz ().

Then we have L2(Q) = ImP; @ImL, kerP, = ImL, and L%(Q)/ImL
is isomorphism to ImP;.
Since dim[L?(Q)/ImL] = dim[ImP,] = dim[kerL] = 1, we have an
isomorphism J : ImP» — kerL.
By the closed graph theorm, the generalized right inverse of L de-
fined by
K = [Llpomraimz] ! : ImL — ImL

is continuous. If we equip the space DomL with the norm

Il = [ 0+ (G up o G0+ 3 (D2ududa,

1B81<2

Then there exist a constant ¢ > 0 independently of h € ImL, u = Kh
such that
| Khllpoms < cllh||L2.

Therefore K : InL — ImL is continuous and by the compact imbed-
ding of DomL in L?(Q), we have that K : ImL — ImL is compact.

LEMMA 2.1. L is closed, densely defined linear operator such that
kerL = [ImL]' and such that the right inverse K : ImL — ImL is
completely continuous.

Proof. See [2, 23]. O

3. Multiplicity result

Let us consider the following

" ou  %u )
(EL) B5; ot + a7 5z DAgu— Mu+ pg(u) = ph(t,z) in Q,
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(B1) u(t,z) =0 on (0,27) x 09,
(Bs2) u(0,z) = u(2m,z) on Q
where p € [0, 1].

Let L : DomL C L?(Q) — L%(Q) be defined as before. If we define
a substitution operator N!' : L2(Q) — L?(Q) by

(NE) (¢, 2) = pg(u) — ph(t, z)

for u € L?(Q) and (t,z) € Q, then N} maps continuously into itself
and take bounded sets into bounded set Let G be any open bounded
subset of L2(Q), then PN} : G — L?*(Q) is bounded and K(I — P2)
G — L%*(Q) is compact and continuous. Thus N is L-compact on G.

The coincidence degree D, (L + N}, G) is well defined and constant
in pif Lu+ Nfu # 0 for p € [0,1] and v € DomL N 9G. It is easy to
check that (u, u) is a weak solution of (E}) if and only if v € DomL
and

(3.1%) Lu+ Nfu=0.

Here, we assume the following

(Hy) |l|1m inf g(u) = 400,
(H3) hm sup| glu )|<)\ — A1

From (H>) and (H3), we may assume that

et SR

and there exist a € (0, A2 — A;) and b > 0 such that
lg(u)| < alu] +0b for all w<0.

For h € L*(Q), we write Ak = [[, h(t, z)¢(z)dtdz.
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LemMA 3.1.  If (Hy), (Hz) and (Hs3) are satisfied, then, for each
h* € L?(Q), there exists M(h*) > 0 independently of y such that

|l < M

holds for each possible weak solution v = a¢ + 4, with o € R and 4 €
ImL, of (E}) with u € [0.1], and with Ah < Ah* and ||h|[2 < ||h*||L2.

Proof. Suppose there exists h € L?(Q) with Ah < AR* and ||h||12 <
|h*||L2 and the corresponding sequence of solutions {(un,ur)}, with
p € [0,1], of (3.15™) such that

lim |G,z = oo,
n—>00

then clearly
lim ||up|lpz = 0.
n—o0

For each n > 1, we put u,(t,x) = apd(x) + @y (¢, z).
First, we are going to prove that

m =
n-—00 ||un“L2

=c < 00.

If it is not the case, we may assume that, by extracting subsequence if
it is necessary,
o Nnllze
n—roo  |au,]

=0.

Therefore, we may have a subsequence, say again, {4, } such that we
have easily

lim |u,(t,2)| = o0 a.e. on Q.
n-—roo

By taking the inner product with ¢ on both sides of (3.1}), we have

//Q g{un(t, x))o(z)dtde = //Q he(z)dtdz < AR*.

On the other hand, by (Hz) and Fatou’s lemma, we have

lim / /Q 9(un(t, 2))é(2)dtdz = oo

n—o0
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which leads to a contradiction. First, we assume that 0 < ¢ < oo, then
there exist ng € N such that

(c/2)an L2 < lan] < (3¢/2)||dn||12 for all n > ng.

For given € > 0, we may choose § > () such that

/ /A |62dtdz < €| p|2

for any measurable set A C Q with |A| < 6.
Let 0 < v < [|¢]loc and Qo = {z € Q: ¢(z) > 4}. Choose My > 0

such that
dMy — |m| // pdtdx > // h*¢(z)dtdz.
Q Q

Then, since lim,_, g(u) = oo, we have that
mo = sup{|u| : vg(u) < Mo} < oo.

We put
Qn ={(t,z) €[0,27] x Qo : |un(t,z)| > mo}.

Then we have |Q,| < 4. In fact, if |Q,] > §, then from the definition of
mg we have

/|| stuntt.aotoyias
— //n g(un)p(z)dtdx +//Q\Qn 9(un) () dtdz
> 0Mo ~ m//Q é(z)dtde

>//Q h*¢(z)dtdzx

and this leads to a contradiction. Therefore, we have

/ /Q gl 2 (1) / /Q andl.
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On the other hand,

0=//Q Qn@lin
= //Q\Qn Ay Py + //Qn Qn @y,

<qay) [ /Q o U 3l — st = [l + / /Q ol

From the definition of mg and the above facts, we have, for all n > ng,
0 < (1/2)mg — (1/2)(1 — €)(¢/2)|@nl 72 + e(3¢/2)|1Tnl|7
= (1/2)m§ — (¢/4)(1 + 5ec) [ @nl| 72

Therefore, {||@n||z2} is bounded which leads to a contradiction.

Next, we assume ¢ = 0, then limy, ;0 ”EL.T'”; =1.
nllg,

Multiplying (3.1%) by % and integrate over @, we find from the peri-
odicity of u that

1
|61
Again, taking the inner prodnct with u, on both sides of (3.14), we
have

ou
122 < Bl e

_ Oun, _
(2 = M) anllZz = |57 1Fa+ < g(un), un >< [IRllz2 @0l 22
and hence
1
3 ~ 12 1/2 *(|2 *
Jim sup(Aa—Aa=a)inf2 < [max{m, bHQI*+ o lIA*lIza +IA"] 2]

Thus {||@n |2} is bounded which leads to another contradiction. [

LEMMA 3.2. If (Hy), (Hs) and (Hs) are satisfied, then, for each
h* € L*(Q), there exists r = r(h*) > 0 independently of p such that
| <7

holds for each possible weak solution u = @ + @, with & = a¢(z),
a € R and @ € ImL, of (3.1})) where pu € [0,1], and with Ah < AR*
and [[hl|z2 < ||A* | z2.
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Proof. Suppose there exists h € L2(Q) with Ah < AR* and ||hl|z2 <
|h*||z2, and the corresponding sequence of weak solutions {(un, pn)}
of (3.1;™) with {|t@,|} is unbounded. Then (u,,pu,) is a solution of
(3.14) where u,, = @, + i, with 4, = a,¢(z) and 4, € ImL. We
may choose a subsequence, say again {4y} with @, = a,¢(z) such that
lan| — 400 as n — +oo. Now, let M > M which is given In Lemma
3.1. Let , _

1+M

Qo = {(t,SL‘) € Qllﬁ(t, "E)l 2 |Q|

}.
Then

MQZ// |i(t, z) | dtdx
Q

> / / (¢, z)2dtdz

1+ M
2 |Qoll 2
Q
Therefore |Qo| < [I—JI:;I—M]2|Q| and hence |Q \ Qo| = [{(t,z) € Q||a(t, )|
< Ly > 1 - Mp2ig) >0,
Let W = (0.27) x Q. Then we have |a,¢(z)| — oo for each z €
as n — oo. Hence, by Fatou’s lemma and (H3), we have

n—o0

lim inf / /Q H(and(@) + lt, 2))(x) dtdz

= liminf //Q gland(x) + a(t, z))d(z) dtdx

n—oo

> // liminf g(a,¢(x) + @(t, x))p(x) dtdz
Wn(Q~Qo) "
= oo.

Hence, there exists ro(h*) > 0 such that, for |a,| > rg, we have

(3.1)
//Q glomd(z) + Gn(t, z))$(z) dtdz > //Q h* () dtdz.

s
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On the other hand, by taking the inner product with ¢(z) on the both
sides of (3.1,™), we have

//Qg(anfﬁ(a?)+ﬂn(t,:c))¢(m)dtdz=//Q hé(z)dtdz < Ah*

which is impossible. The proof is complete. O

LeEmMA 3.3. If (H,y), (Hz) and (H3) are satisfied, then, for each
h* € L?(Q), we can find an open bounded set G(h*) in L*(Q) such
that, for each open bounded set G in L*(Q) such that G 2 G(h*), we

have
D(L+ N},G) =0 forall he L*(Q)

with AR < AR* and “h”Lz < ¥ || pe2-

Proof. By similar fashion as we did in the proof of Lemma 3.2 to
get (3.1), there exists #(h*) > 0 such that, for |a| > 7, we have

//Q g(ag(z))p(z)dtdz > //Q h* () dtda.

G(h*) = {u € L}(Q)| —7o(z) < ag(z) < Fp(z) for z € Q, ||@| 2 < M}

Let

where u = a¢(z) + 4 with #(h*) > max{r(h*), ro(h*),7(h*)} and M >
M which are given in Lemma 3.1 and Lemma 3.2. If (3.1;) has a

solution u for some A € L%(Q) such that AR < 2wm [, ¢(x)dz and
p € [0,1], then by taking the inner product with ¢ on the both sides
of the equation (3.1%), we have

27rm/¢ d:r<// dtda:—//h¢ Ydtdx.

Thus (3.1%) has no solution for h € L?(Q) such that AR < 2mm

Jo #(x) dz
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Hence, for each open bounded set G O G(h*), we have
Dr(L+NLG)=0 for heL*Q)

such that Ak < 2mm [, ¢(z)dx. Choose h € L2(Q) with AR < 21 m
fq ¢(z)dz and ||k||g2 < ||h*||L2, and define

F:(D(L)NG) x [0,1] - L*(Q) by
F(u,\) = Lu+ N _yh4an(u) for he LYQ)

with Ah < AR* and ||h||L2 < ||h*||L2. Then by Lemma 3.1 and Lemma
3.2, we have

0¢ F(D(L)NOG) x [0,1] for h e L*(Q)

with Ak < AR* and ||hl|zz < ||h*||z2. By the homotopy invariance of
degree, we have, for all h € L%(Q) with Ah < AR* and ||k 2 < ||h*]| L2,

DL(L+Né,G) = DL(F('a 1)’G)
:DL(F(aO)’G)
=Dy (L + N}, G)
=0

and the proof is completed. g

THEOREM. Assume (Hy), (Hz2) and (H3). Then there there exist a
constant agp such that the boundary value problem (E), (By), and (Bs)
has at least two solutions for h such that

(3.2) / /Q g(aod(z) + i(t, )b () dtds < / /Q ho(z)dtde

for every i € L?(Q) having mean value zero on (2, satisfying the con-
ditions (B1), and (Bz) such that

(3.3) Iafiz2 < M,

where M is given Lemma 3.3.
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Proof. Let

glaod(xo) + o) = glelg g(ag(z) + 1)
la[<7

laf< M
Define
A(G(R) = {u € L2(Q)|cod(z) < ad(z) < Fod(z) for = € Q, ||ill L2 < M}

where 7o(h) > 7 which is given in Lemma 3.3.

If u € BAG(h), then necessary u = ag¢(z) + @ or u = Fop(z) +u. If
u = apd(z) + @ with |||z < M, then, by taking inner product with
¢ on the both sides of (3.1}), we have

// (oo(z) + a(t, z))¢ dtdac—// h¢(z)dtdz

which, from (3.2) and (3.3), is impossible. If u = To¢(z) + @ with
|l&|jz= < M, then, by the choice of 7o > 0, we have

//Q g9(Fod(z) + @)p(z)dtdz > /s;hcb(x)dtdx

which is also impossible. Thus for u € [0,1], Dr(L + N}, AG(h)) is
well defined and

Di(L + N*, AG(h)) = D(JP;N}*, AG(h) N kerL,0)

where Dp ia Brouwer degree and PN} : L?(Q) — kerL is an operator
defined by

(PN' ) / / z)dtdz — / / hdtdz)é

Now let T : kerL — R be defined by

T(og(z)) =
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Then, for =1,

D (L+ N}, AG(h)) = Dp(JP,N}, AG(h) NkerL, 0)
= Dp(T(JP.N})T~ 1, T(AG(h)) NkerL),0).

If we let J : ImP> — kerL be the identity map, then the operator
® = T(JP.N})T~! will be defined by

B(a) = / /Q o(ad(z))é(x)dtdz — / /Q ho(z)dtda.

Thus, we have

#(ao) = [ /Q gleod(@)o(@)dedz - | /Q hé(z)dtds < 0

and by the choice of 7y, we have
®(7p) = P dtdr — h dtd .
o) = [[ stoste)otwpas - [[ notwaa >0

Hence, the coincidence degree exists and the corresponding value
|DL(L — N,AG(h))| = |Dg[JP; N}, AnKerL,,0]| = 1.

Therefore, the equation (3,1;) has at least one solution in AG(h)
Choose G 2 AG(h), where G is defined in Lemma 3.3. By the
additivity of degree, we have

0=Dr(L+N} G)=Dr(L+NL AG(h)))+DL(L+ N}, G- AG(h))

and hence
|DL(L + N}, G — AG(R))| = 1.

Therefore (3.1}) has another solution in G — AG(h). This proves our
assertion. O
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