CONSENSUS N-TREES AND REMOVAL INDEPENDENCE

  • Powers, R.C. (Department of Mathematics University of Louisville)
  • Published : 2000.05.01

Abstract

Removal independence is a translation of Arrow's axiom of independence of irrelevant alternatives for social welfare functions to an axiom about consensus functions involving n-trees. It is shown that a consensus function is removal independent if and only if it is expressible as th union of three types of functions.

Keywords

References

  1. Social Choice and Individual Values K. J. Arrow
  2. Appl. Math. Lett. v.2 On an independence condition for consensus n-trees J.-P. Barthelemy;F. R. McMorris
  3. Appl. Math. Lett. v.4 Independence conditions for consensus n-trees revisited J.-P. $Barth\'{e}lemy$;F. R. McMorris;R. C. Powers
  4. Math. Soc. Sci. v.25 Dictatorial consensus functions on n-trees J.-P. $Barth\'{e}lemy$;F. R. McMorris;R. C. Powers
  5. Math and Computer Modelling v.22 Stability conditions for consensus funtions defined on n-trees J.-P. $Barth\'{e}lemy$;F. R. McMorris;R. C. Powers
  6. Econometrica v.61 t or 1 - t. That is the trade-off D. E. Campbell;J. S. Kelly
  7. British J. Math. Statist. Psych. v.34 Tree structures for proximity data H. Colonius;H. H. Schulze
  8. Discrete Appl. Math. v.47 Consensus functions on trees that satisfy an independence axiom F. R. McMorris;R. C. Powers
  9. J. Econom. Theory v.5 Social choice without the Pareto principle R. Wilson