QUANTUM HYPERPLANE SECTION PRINCIPLE FOR CONCAVEX DECOMPOSABLE VECTOR BUNDLES

  • Kim, Bum-Sig (Department of mathematics Pohang University of Science and Technology)
  • Published : 2000.05.01

Abstract

The quantum hyperplane section theorem is explained for nonnegative decomposable concavex bundle spaces over generalized flag manifolds.

Keywords

References

  1. Nuclear Phys. v.B514 no.3 Conifold Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians V. Batyrev;I. Ciocan-Fontanine;B. Kim;D. van Straten
  2. E-print math. AG/9803108 Mirror Symmetry and Toric Degenerations of Partial Flag Manifolds(To appear in Acta Mathematica) V. Batyrev;I. Ciocan-Fontanine;B. Kim;D. van Straten
  3. Ph. D. Thesis A. Elezi
  4. IMRN 1996 no.13 Equivariant Gromov-Witten invariants A. Givental
  5. E-print math. AG/9803053 Elliptic Gromov-Witten invariants and the generalized mirror conjecture A. Givental
  6. E-print math. AG/9712008 Quantum Hyperplane Section Theorem for Homogeneous spaces(To appear in Acta Mathematica) B. Kim
  7. Asian J. of Math. v.1 no.4 Mirror principle B. Lian;K. Liu;S.-T. Yau
  8. E-print math. AG/9806133 Rational curves on hypersurfaces (after A. Givental) R. Pandharipande