ON BERNOULLI NUMBERS

  • Published : 2000.05.01

Abstract

In the complex case, we construct a q-analogue of the Riemann zeta function q(s) and a q-analogue of the Dirichlet L-function L(s,X), which interpolate the 1-analogue Bernoulli numbers. Using the properties of p-adic integrals and measures, we show that Kummer type congruences for the q-analogue Bernoulli numbers are the generalizations of the usual Kummer congruences for the ordinary Bernoulli numbers. We also construct a q0analogue of the p-adic L-function Lp(s, X;q) which interpolates the q-analogue Bernoulli numbers at non positive integers.

Keywords

References

  1. Number Theory Z. I. Borevich;I. R. Shafarevich
  2. Duke Math. J. v.46 A new proof of certain formulas for p-adic L-functions N. Kobilitz
  3. Mathematical Society Lecture Notes, Series 46 p-adic Analysis: a Short Course on Recent Work N. Kobilitz
  4. J. Number Theory v.14 On Carlitz's q-Bernoulli numbers N. Kobilitz
  5. p-adic Number, p-adic Analysis, and Zeta-Functions, (2nd) N. Kobilitz
  6. Kyushu J. Math. v.48 On explicit formulas of p-adic q-L-function T. Kim
  7. Rep. Fac. Sci. Engrg. Saga Univ. Math. v.22 An analogue of Bernoulli numbers and their congruences T. Kim
  8. Bull. Korean Math. Soc. v.36 On poly-Eulerian numbers J.-W. Son;M.-S. Kim
  9. Introduction to Cyclotomic Fields, (2nd) L. C. Washington
  10. J. London Math. Soc v.8 no.2 An invariant p-adic integral on $Z_p$ C. F. Woodcock