Abstract
This experiment was conducted in three trials to evaluate optimal ambient temperature for a novel milk replacer feeding system designed for early-weaned pigs, compared to commercial dry diets fed within a conventional hot nursery. A total of 165 PIC genotype pigs were weaned at $13.89{\pm}0.7$ days of age and allotted to one of two dietary treatments in three trials based on weight and litter origin. Each trial consisted of pigs fed dry diets (DD) and pigs fed milk replacer (MR) which was offered in one of 3 different ambient temperatures. Pigs fed milk replacer were housed in a specialized nursery building in which one half of each pen contained an enclosed hover that was thermostatically maintained at $32^{\circ}C$ while the exterior ambient temperature (where milk was fed) was set at either 17 (trial 1), 24 (trial 2) or $32^{\circ}C$ (trial 3). Pigs fed dry diets with the conventional nursery were maintained at $30^{\circ}C$ for each trial. From d 21 to d 49, all pigs were fed DD within a standardized hot nursery environment. During the first week (d 14-21), pigs fed MR showed increased ADG from 214% to 228% over control pigs fed DD (p<0.001), regardless of ambient temperature. As ambient temperature was increased from 17 to 24 to $32^{\circ}C$, ADG of MR-fed pigs was increased by 214%, 220% and 228% over those of pigs fed DD, respectively. ADFIs of MR-fed pigs at $17^{\circ}C$, $24^{\circ}C$, and $32^{\circ}C$ compared with pigs fed DD were increased by 108%, 139% and 164% from d 14 to d 21, respectively. Fed efficiency (G/F) of MR-fed pigs at $17^{\circ}C$, $24^{\circ}C$, and $32^{\circ}C$ compared with pigs fed DD were 199%, 162% and 139% of those of pigs fed DD, respectively. As ambient temperature increased, diarrhea scores showed a slight tendency to increase. The advantage of MR feeding was greater when the ambient temperature was higher, but G/F was impaired with increased ambient temperature. We conclude that ambient temperature within the specialized nursery influenced behavior, MR feed intake, and probably piglet energy expenditure. There were no differences between MR-fed and DD-fed pigs for ADG, ADFI and G/F in the subsequent growth period (d 21 to d 49, p>0.05). Maximal advantage of MR feeding was obtained at the intermediate ($24^{\circ}C$) ambient temperature during the overall period (p<0.05). Results from this experiment indicate that a milk replacer feeding system utilized in the early postweaning period can maximize pig growth performance, and that ADG, ADFI and G/F were affected by different ambient temperatures within MR-fed pigs. The high or low temperatures could not support the maximal growth of pigs fed MR.