Syntheses of Disubstituted Polysilanes (Ⅱ): Sonochemical Study

폴리실란의 합성 (Ⅱ): 초음파 화학적 연구

  • Published : 19990200

Abstract

Polysilanes with sterically bulky substituents, -[2-( $R^1R^2$-phenyl)propyl]Si[$R^3$]-, such as poly(2-phenylpropyl)(n-hexyl)silane [$R^1=R^2$=H, $R^3$=n-hexyl] were prepared by Wurtz-type coupling reactions with Na using a sonochemical method. The high-intensity ultrasound provided the formation of high quality Na dispersion in toluene and its active surface which was important for the synthesis of polysilanes in Wurtz-type coupling reaction was freshly and continuously regenerated during the process. The polysilanes products were mixtures of high molecular weight polymers with $\={M}_W$ of ∼$10^6$ and low molecular weight polymers with $\={M}_W$ of ∼$10^3$. It was found that the formation of high molecular weight polymerr was greatly influenced by the substituents $R^3$, directly attached to Si. On the contrary, changes on substituents ($R^1, R^2$) gave no influences at all. Overall yields for polysilanes were 75-99% in general but high molecular weight polysilanes were obtained as a major product when substituent $R^3$ is n-hexyl group and low molecular weight polysilanes were obtained as a major product when substituent $R^3$ is cyclohexyl and 2-phenylethyl groups. Effects of reaction conditions to polysilane yields were investigated.

크기가 큰 치환기의 폴리실란-[2-($R^1R^2$-phenyl)propyl]Si[$R^3$]-[예:$R^1=R^2$=H, $R^3$=n-hexyl; 폴리(2-페닐프로필)(n-헥실)실란]을 초음파 화학적 방법을 사용하여 Wurtz 축합반응에 의해 합성하였다. 초음파는 톨루엔 용매 중 금속 나트륨을 분산시켜 작은 크기와 높은 표면 활성의 나트륨을 형성하였으며 이에 의해 Wurtz 축합반응이 진행되었고 또한 초음파는 부 생성물인 염화나트륨이 나트륨 표면에 침착되는 것을 방지하여 표면활성이 지속적으로 유지되도록 하여 효율적인 반응이 기대되었다. 폴리실란 생성물은 저분자량의 중합체(분자량~$10^3$)와 고분자량의 중합체(분자량~$10^6$)의 혼합물로 얻어 졌다. 전체 수득률은 75-99% 이었으나 $R^3$가 n-hexyl기인 경우에는 혼합비율은 고분자량 중합체가 주 생성물로, cyclohexyl 또는 2-phenylethyl기인 경우에는 저분자량 중합체가 주 생성물로 얻어져 폴리실란의 치환기 종류에 영향을 받는 것으로 나타났으나 $R^1, R^2$의 변화는 영향을 나타내지 않았다.

Keywords

References

  1. J. Am. Chem. Soc. v.110 Kim, H. K.;Matyjaszewski, K.
  2. Macromolecules v.28 Matyjaszewski, K.;Greszta, D.;Jeffrey, S. H.;Kim, H. K.
  3. J. Polymer Sci.: Part A. Polym. Chem. v.35 Kani, R.;Nakano, Y.;Yoshida, H.;Mikoshiba, S.;Hayase, S.
  4. J. Polym. Sci.: Part A. Polym. Chem. v.29 Miller, R. D.;Thomson, D.;Sooriyakumaran, R.;Fickes, G. N.
  5. Polymer. v.37 Suzanne, M.;Bushnell, W.;Michael, J. M.;John, H. S.
  6. J. Chem. Soc. v.125 Kipping, F. S.
  7. Nature v.353 Robert, E. B.;Cragg, R. H.;Richard, G. J.;Anthony, C. S.
  8. Chem. Lett. Yajima, S.;Hayashi, J.;Omori, M.
  9. J. Am. Ceram. Soc. v.61 Mazdiyasni, K. S.;West, R.;David, L. D.
  10. J. Organomet. Chem. v.198 Trujillo, R. E.
  11. Bull. Korean Chem. Soc. v.12 Jung, I. N.;Lee, G.-H.;Suk, M.-Y.;Yeon, S.-H.
  12. Bull. Korean Chem. Soc. v.17 Jang, S.-H.;Park, C.-K.;Song, Y.-S.;Lee, G.-H.
  13. J. Org. Chem. v.50 Christian, P.;Souza, B.;Jayne, C.;Claude, D.;Luche, J.-L.
  14. Ultrasonics v.30 Miethchen, R.
  15. Ultrasonics v.24 Mason, T. J.
  16. Macromolecules v.25 Price, G. J.;Norris, D. J.;West, P. J.
  17. J. Chem. Ed. v.63 Boudjouk, P.
  18. J. Chem. Soc.; Chem. Comm. Price, G. J.
  19. J. Am. Chem. Soc. v.108 Suslick, K. S.;Hammerton, D. A.;Raymond, E. C.
  20. Ultrasonics v.32 Didenko, Y. T.;Nastich, D. N.;Pugach, S. P.;Polovinka, Y. A.;Kvochka, V. I.
  21. Ultrasonics v.30 Worsley, D.;Mills, A.
  22. Ultrasonics v.29 Lorimer, J. P.;Mason, T. J.;Fiddy, K.
  23. Ultrasonics v.24 Akulichev, V. A.
  24. Ultrasonics v.31 Mak, K.;Gauthier, J.
  25. Organometallics v.12 Yeon, S.-H.;Lee, B. W.;Kim, S. I.;Jung, I. N.
  26. J. Chem. Phys. v.70 Sehgal, C.;Steer, R. P.;Sutherland, R. G.;Verrall, R. E.
  27. J. Am. Chem. Soc. v.109 Suslick, K. S.;Casadonte, D. J.
  28. Manuscript in Preparation for Publication Lee, G.-H.