A Stereochemical Aspect of Pyridoxal 5' -Phosphate Dependent Enzyme Reactions and Molecular Evolution

  • Jhee, Kwang-Hwan (Laboratory of Biochemistry, and Genetics, NIDDK, National Institute of Health) ;
  • Tohru, Yoshimura (Laboratory of Biofunctional Molecules, Institute for Chemical Research, Kyoto University) ;
  • Yoichi, Kurokawa (Laboratory of Biofunctional Molecules, Institute for Chemical Research, Kyoto University) ;
  • Nobuyoshi, Esaki (Laboratory of Biofunctional Molecules, Institute for Chemical Research, Kyoto University) ;
  • Kenji, Soda (Department of Biotechnology, Faculty of Engineering, Kansai University)
  • Published : 1999.12.01

Abstract

We have studied the stereospecificities of various pyridoxal 5'-phosphate (PLP) dependent enzymes for the hydrogen transfer between the C-4' of a bound coenzyme and the C-2 of a substrate in the transamination catalyzed by the enzymes. Stereospecificities reflect the structures of enzyme active-sites, in particular the geometrical relationship between the coenzyme-substrate Schiff base and the active site base participating in an $\alpha$-hydrogen abstraction. The PLP enzymes studied so far catalyze only a si-face specific (pro-S) hydrogen transfer. This stereochemical finding suggests that the PLP enzymes have the same topological active-site structures, and that the PLP enzymes have evolved divergently from a common ancestral protein. However, we found that o-amino acid aminotransferase, branched chain L-amino acid aminotransferase, and 4-amino-4-deoxychorismate lyase, which have significant sequence homology with one another, catalyze a re-face specific (pro-R) hydrogen transfer. We also showed that PLP-dependent amino acid racemases, which have no sequence homology with any aminotransferases, catalyze a non-stereospecific hydrogen transfer: the hydrogen transfer occurs on both faces of the planar intermediate. Crystallographical studies have shown that the catalytic base is situated on the re-face of the C-4' of the bound coenzyme in o-amino acid aminotransferase and branched chain L-amino acid aminotransferase, whereas the catalytic base is situated on the si-face in other aminotransferases (such as L-aspartate aminotransferase) catalyzing the si-face hydrogen transfer. Thus, we have clarified the stereospecificities of PLP enzymes in relation with the primary structures and three-dimensional structures of the enzymes. The characteristic stereospecificities of these enzymes for the hydrogen transfer suggest the convergent evolution of PLP enzymes.

Keywords

References

  1. Eur. J. Biochem. v.219 Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific α, β and γ familes Alexander, F. W.;E. Sandmeier;P. K. Mehta;P. Christen
  2. J. Mol. Biol. v.284 The crystal structure of 8-amino-7-oxononanoate synthase: A bacterial PLP-dependent, acyl-CoA-condensing enzyme Alexeev, D.;M. Alexeeva;R. L. Baxter;D. J. Campopiano;S. P. Webster;L. J. Sawyer
  3. Biochemistry v.32 Three-dimensional structure of tyrosine phenol-lyase Antson, A. A.;T. V. Demidkina;P. Gollnick;Z. Dauter;R. L. von Tersch;J. Long;S. N. Berezhnoy;R. S. Phillips;E. H. Harutyunyan;K. S. Wilson
  4. Advan. Enzymol. v.19 Les voies principales de l'assimilation et dissimilation de l'azote chez les animaux Braunstein, A. E.
  5. The Enzymes v.9 Braunstein, A. E.
  6. J. Mol. Biol. v.283 Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium Burkhard, P.;G. S. J. Rao;E. Hohenester;K. D. Schnackerz;P. F. Cook;J. N. Jansonius
  7. J. Mol. Biol. v.262 Crystal structure of the pyridoxal-5'-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 angstrom Clausen, T.;R. Huber;B. Laber;H. D. Pohlenz;A. Messerschmidt
  8. EMBO J. v.23 Crystal structure of Escherichia coli cystathionine γ-synthase at 1.5 Å resolution Clausen, T.;R. Huber;L. Prade;M. C. Wahl;A. Messerschmidt
  9. Adv. Enzymol. Relat. Areas Mol. Biol. v.35 Stereochemical aspects of pyridoxal phosphate catalysis Dunathan, H. C.
  10. Proc. Natl. Acad. Sci. USA v.71 Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor Dunathan, H. C.;J. G. Voet
  11. Biochemistry v.38 Crystal structure of 3-amino-5-hydroxybenzoic acid (AHBA) synthase Eads, J. C.;M. Beeby;G. Scapin;T. W. Yu;H. G. Floss
  12. Biochemistry v.27 Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: Energetic reaction profiles Faraci, W. S.;C. T. Walsh
  13. Structure v.15 Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase Gallagher, D. T.;G. L. Gilliand;G. Xiao;J. Zondlo;K. E. Fisher;D. Chinchilla;E. Eisenstein
  14. J. Bacteriol. v.174 Characterization and sequence of Escherichia coli pabC, the gene encoding aminodeoxychorismate lyase, a pyridoxal phosphate-containing enzyme Green, J. M.;W. K. Merkel;B. P. Nichols
  15. Gene v.119 Translational initiation factors IF-1 and eIF-2 alpha share an RNA-binding motif with prokaryotic ribosomal protein S1 and polynucleotide phosphorylase Gribskov, M.
  16. Protein Sci. v.4 Modeling of the spatial structure of eukaryotic ornithine decarboxylase Grishin, N. V.;M. A. Phillips;E. J. Goldsmith
  17. Proc. Natl. Acad. Sci. USA v.94 Crystal structure of glutamate-1-semialdehyde aminomutase: An alpha-dimeric vitamin B-6-dependent enzyme with asymmetry in structure and active site reactivity Hennig, M.;B. Grimm;R. Contestabile;R. A. John;J. N. Jansonius
  18. J. Mol. Biol. v.286 Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 Å resolution: Comparison of the unligated enzyme and a complex with α-methl-l-glutamate Hester, G.;W. Stark, M. Moser;J. Kallen;Z. MarkovicHousley;J. N. Jansonius
  19. J. Biol. Chem. v.263 Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium Hyde, C. C.;S. A. Ahmed;E. A. Padlan;E. W. Miles;D. R. Davies
  20. Biochemistry v.25 Thermostable alanine racemase from Bacillus stearothermophilus: Molecular cloning of the gene, enzyme purification, and characterization Inagaki, K.;K. Tanizawa, B. Badet;C. T. Walsh;H. Tanaka;K. Soda
  21. Agric. Biol. Chem. v.51 Purification and characterization of amino acid racemase with broad substrate specificity from Aeromonas caviae Inagaki, K.;K. Tanizawa;H. Tanaka;K. Soda
  22. J. Biochem. v.104 Branchedchain amino acid aminotransferase of Escherichia coli: Overproduction and properties Inoue, K.;S. Kuramitsu;K. Aki;Y. Watanabe;T. Takagi;M. Nishigai;A. Ikai;H. Kagamiyama
  23. J. Mol. Biol. v.276 Cystal structure of tryptophanase Isupov, M. N.;A. A. Antson;E. J. Dodson;G. G. Dodson;I. S. Dementieva;L. N. Zakomirdina;K. S. Wilson;Z. Dauter;A. A. Lebedev;E. H. Harutyunyan
  24. J. Biochem. v.118 Thermostable ornithine aminotransferase from Bacillus sp. YM-2: Purification and characterization Jhee, K.-H.;T. Yoshimura;N. Esaki;K. Yonaha;K. Soda
  25. Biochemistry v.35 Stereospecificity of thermostable ornithine 5-aminotransferase for the hydrogen transfer in the L- and D-ornithine transamination Jhee, K.-H.;T. Yoshimura;N. Esaki;K. Soda
  26. Agric. Biol. Chem. v.54 Thermostable S-alkylcysteine α,β-lyase from a thermophile: Purification and properties Kamitani, H.;N. Esaki;H. Tanaka;K. Soda
  27. Structure Fold. Des. v.7 Structure of mammalian ornithine decarboxylase at 1.6Å resolution: Stereochemical implications of PLP-dependent amino acid decarboxylases Kern, A. D.;M. A. Oliveira;P. Coffino;M. L. Hackett
  28. J. Mol. Biol. v.174 Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure Kirsch, J. F.;G. Eichele;G. C. Ford;M. G. Vincent;J. N. Jansonius;H. Gehring;P. Christen
  29. J. Biochem. v.97 Branched-chain amino acid aminotransferase of Escherichia coli: Nucleotide sequence of the ilvE gene and the deduced amino acid sequence Kuramitsu, S.;T. Ogawa;H. Ogawa;H. Kagamiyama
  30. J. Bacteriol. v.175 A new amino acid racemase with threonine α-epimerase activity from Pseudomonas putida: Purfication and characterization Lim, Y.-H.;K. Yokoigawa;N. Esaki;K. Soda
  31. J. Biol. Chem. v.273 Nonstereospecific transamination catalyzed by pyridoxal phosphate-dependent amino acid racemases of broad substrate specificity Lim, Y.-H.;T. Yoshimura;Y. Kurokawa;N. Esaki;K. Soda
  32. Eur. J. Biochem. v.211 Homology of pyridoxal-5'-phosphate-dependent aminotransferase with the cobC(cobalamin synthesis) nifs (nitrogen fixation), pabC (paminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products Mehta, P. K.;P. Christen
  33. Eur. J. Biochem. v.214 Aminotransferases: Demonstration of homology and division into evolutionary subgroups Mehta, P. K.;T. I. Hale;P. Christen
  34. J. Am. Chem. Soc. v.76 A general mechanism for vitamin B6-catalyzed reactions Metzler, D. E.;M. Ikawa;E. E. Snell
  35. Transaminases Miles, E. W.;Christen, P.(ed.);D. E. Metzler(ed.)
  36. J. Biol. Chem. v.257 Stereochemistry of sodium borohydride reduction of tryptophan synthase of Escherichia coli and its amino acid Schiff's bases Miles, E. W.;D. R. Houck;H. G. Floss
  37. J. Mol. Biol. v.252 Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0Å resolution Momany, C.;S. Ernst;R. Ghosh;N. L. Chang;M. L. Hackert
  38. Protein Sci. v.4 Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: An analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase Momany, C.;R. Ghosh;M. L. Hackert
  39. J. Biochem. v.121 Three-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 Å resolution Okada, K.;K. Hirotsu;M. Sato;H. Hayashi;H. Kagamiyama
  40. J. Mol. Biol. v.280 Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: A substrate recognition site constructed by rearrangement of hydrogen bond network Okamoto, A.;Y. Nakai;H. Hayashi;K. Hirotsu;H. Kagamiyama
  41. Structure v.15 The crystal structure of human cytosolic serine hydroxymethyltransferase: A target for cancer chemotherapy Renwick, S. B.;K. Snell;U. Baumann
  42. Biochemistry v.36 Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-resolution Shaw, J. P.;G. A. Petsko;D. Ringe
  43. J. Mol. Biol. v.277 Crystal structure of human recombinant ornithine aminotransferase Shen, B. W.;M. Hennig;E. Hohenester;J. N. Jansonius;T. Schirmer
  44. Acta Vitaminol. Enzymol. v.29 Regulation of the activity of microbial kynureninase by transamination of the enzyme-bound cocnzyme Soda, K.;M. Moriguchi;K. Tanizawa
  45. Methods Enzymol. v.17B Amino acid racemase (Pseudomonas striata) Soda, K.;T. Osumi
  46. Biochemistry v.37 Reaction of alanine racemase with 1-aminoethyphosphonic acid forms a stable external aldimine Stamper, C. G.;A. A. Morollo;D. Ringe
  47. Enzymes Dependent on Pyridoxal Phosphate and other Carbonyl Compounds as Cofactors Stark, W.;J. Kallen;Z. Markovic-Housley;B. Fol;M. Kania;J. N. Jansonius;Fukui, T.(ed.);H. Kagamiyama(ed.);K. Soda(ed.);H. Wada(ed.)
  48. Biochemistry v.34 Crystal structure of a D-amino acid aminotransferase: How the protein controls stereoselectivity Sugio, S.;G. A. Petsko;J. M. Manning;K. Soda;D. Ringe
  49. Biochemistry v.38 Evidence for a two-base mechanism involving tyrosines-265 from arginine-219 mutants of alanine racemase Sun, S.;M. D. Toney
  50. J. Biochem. v.115 Aspartate aminotransferase from an thermophilic formate-utilizing methanogen, Methanobacterium thermoformicicum strain SF-4: Relation to serine and phosphoserine aminotransferases, but not to the aspartate aminotransferase family Tanaka, T.;S. Yamamoto;Y. Moriya;M. Taniguchi;H. Hayashi;H. Kagamiyama;S. Oi
  51. Biotechnol. Appl. Biochem. v.12 Overproduction and crystallization of tryptophanase from recombinant cells of Escherichia coli. Tani, S.;N. Tsujimoto;Y. Kawata;M. Tokushige
  52. J. Biol. Chem. v.264 The primary structure of thermostable D-amino acid aminotransferase from a thermophilic Bacillus speceis and its correlation with L-amino acid aminotransferases Tanizawa, K.;S. Asano;Y. Masu;S. Kuramitsu;H. Kagamiyama;H. Tanaka;K. Soda
  53. J. Biol. Chem. v.264 Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination Tanizawa, K.;Y. Masu;S. Asano;H. Tanaka;K. Soda
  54. J. Biol. Chem. v.261 Stereospecific labilization of the C-4' pro-S hydrogen of pyridoxamine 5'-phosphate in aspartate aminotransferase Tobler, H. P.;P. Christen;H. Gehring
  55. Science v.261 Dialkylglycine decarboxylase structure: Bifunctional active site and alkali metal sites Toney M. D.;E. Hohenester;S. W. Cowan;J. N. Jansonius
  56. J. Biol. Chem. v.266 Thermostable alanine racemase of Bacillus stearothermophilus: Construction and expression of active fragmentary enzyme Toyama, H.;K. Tanizawa;T. Yoshimura;S. Asano;Y.-H. Lim;N. Esaki;K. Soda
  57. J. Biochem. v.105 Crystal structure analysis of omega-amino: Pyruvate aminotransferase with a newly developed Weissenberg camera and an imaging plate using synchrotron radiation Watanabe, N.;K. Sakabe;N. Sakabe;T. Higashi;K. Sasaki;S. Aibara;Y. Morita;K. Yonaha;S. Toyama;H. Fukutani
  58. J. Biochem. (Tokyo) v.126 Tyrosine 265 of alanine racemase serves as a base abstracting α-hydrogen from L-alanine: The counterpart residue to lysine 39 specific to D-alanine Watanabe, A.;T. Yoshimura;B. Mikami;N. Esaki
  59. J. Am. Chem. Soc. v.115 Unique stereospecificity of D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase for C-4' hydrogen transfer of the coenzyme Yoshimura, T.;K. Nishimura;J. Ito;N. Esaki;H. Kagamiyama;J. M. Manning;K. Soda