앤트로피 거절을 활용한 음성인식 시스템의 성능 향상

Improvement of Speech Recognition System using Entropy Rejection

  • 발행 : 1999.11.01

초록

본 논문은 음성인식 시스템에서 정확도를 높이기 위해 후처리 단계에서 후보 단어들의 엔트로피 정보를 이용하였다. 기존의 우도비 검출방법은 음성 데이터에 따라 음성인식 시스템의 성능이 변하고 N개의 후보단어들의 우도값이 비슷하여 오인식 발생확률이 높았다. 그러나 본 눈문에서는 각 후보 단어들의 엔트로피 값보다 인식대상 단어 외의 단어들의 엔트로피 값이 상대적으로 낮은 후보를 거절하는 후처리 방법을 사용하여 음성 데이터에 독립적이면서도 변별력을 높인 정확한 음성인식 시스템을 얻을 수 있었다. 실험 결과 본 논문에서 제안하는 엔트로피에 의한 후처리 방법은 우도비에 의한 방법보다 인식 시스템의 성능을 false alarm이 20%일 때 최대 3.6% 향상시킬 수 있었다.

This thesis is a study on using of entropy information about the additional words in the after processing step to promote an accuracy in speech recognition system. The exsisting ratio of Woodo detective method changes the efficiency of speech recognition system according to speech data and increases the probability of producing error recognition because of similarity of value of Woodo in the additional words. But we could obtain the accurate speech recognition system which heightens discrimination becoming independent of speech data by using of after processing method refusing a candidate which entropy price is lower among words except words we could recognize than entropy Price of each additional word. As a result of this experiment when the false alarm is 20 percent, we could put out the maximum 3.6 percent efficiency of recognition system through this after processing method by entropy more than the method by ratio of Woods.

키워드