Abstract
A new image compression method to preserve edge characteristics in reconstructed images using an unsupervised learning neural is proposed in this paper. By the unsupervised competitive learning which generalizes previously proposed Centroid Neural Network(CNN) algorithm with the geometric characteristics of edge area and statistical characteristics of image data, more codevectors are allocated in the edge areas to provide the more accurate edges in reconstructed image. Experimental results show that the proposed method gives improved edge in reconstructed images when compared with SOM, Modified SOM and M/R-CNN.
무지도 경쟁학습을 이용하여 압축된 영상의 복원 후에 나타나는 테두리부분의 손상을 최소화하기 위한 영상압축 방법이 제안되었다. 제안된 영상압축방법은 영상데이터에서 테두리부분에 해당하는 데이터의 기하학적인 특징을 이용하는데, 영상데이터의 통계학적인 특성을 함께 이용하여 기존의 Centroid Neural Network을 일반화시키는 무지도 경쟁학습에 의하여 자동적으로 더욱 많은 code vector를 테두리부분에 배정함으로서 압축된 영상의 복원 후에 나타나는 테두리부분의 손상을 초소화하게 한다. 실험 결과, 기존의 SOM, M-SOM, M/R-CNN등과 비교하여 제안된 방법에 의해 압축된 영상의 복원된 테두리 부분에서 PSNR이 약 2dbv정도 향상된 결과를 보여줄 수 있었다.