Abstract
In this paper we propose a 2D FLIR image-based 3D target recognition system which performs group-to-ground vehicle recognition using the target contour and its degree of reliability extracted from FLIR image. First we extract target from background in FLIR image. Then we define contour points of the extracted target which have high edge gradient magnitude and brightness value as reliable contour point and make reliable contour by grouping all reliable contour points. After that we extract corresponding reliable contours from model contour image and perform comparison between scene and model features which are calculated by DST(discrete sine transform) of reliable contours. Experiment shows that the proposed algorithm work well and even in case of imperfect target extraction it showed better performance then conventional 2D contour-based matching algorithms.
본 논문에서는 2차원 영상을 기반으로 3차원 목표물을 인식하는 기법의 한 예로서 적외선 영상으로부터 추출된 물체의 모양 정보와 모양 정보의 신뢰도를 이용해서 지상에서 지상용 차량을 인식하는 기법(ground-to-ground vehicle recognition)을 제안한다. 우선 목표물 추출과정에서 얻어진 마스크의 윤곽선 상에 있는 점들 중 에지 경사도의 크기와 밝기값이 일정한 값 이상이 되는 점들을 신뢰도가 높은 점이라고 정의하고 신뢰도가 높은 점들을 연결해서 신뢰도가 높은 부분 윤곽선(sub-contour)을 추출한다. 모델로부터 입력 영상의 신뢰도가 높은 윤곽선에 해당되는 윤곽선을 선택한 후 각각 해당되는 윤곽선들은 이산 정현 변환(Discrete Sine Transform)을 사용해서 특징값을 계산한 다음 서로 비교한다. 실험 결과 영상 분할이 불완전한 경우 신뢰도를 이용한 방법이 그렇지 않은 방법보다 더 나은 결과를 보였다.