Abstract
Optimization of in-cylinder flow is regarded as one of the most important factors to realize stable stratified charge combustion in a Spark-ignited Direct Injection(SDI) engine. Therefore, Computational Fluid Dynamic(CFD) simulation technique were used to clarify the characteristics of in-cylinder flow of a SDI engine with top entry intake port. Also, CFD results were compared to experimental results using Laser Doppler Velocimetry(LDV), Particle Image Velocimetry(PIV) and good validations were met. As the results reverse tumble flow generated during intake process was preserved by configuration of curved piston while base and reverse tumbles were diminished at the end of compression stroke in case of flat top piston. In addition, it will be needed to optimize the fuel mixture distribution based on these results.