Federated Variable Dimension Kalman Filters with Input Estimation for Maneuvering Target Tracking

기동하는 표적의 추적을 위한 연합형 가변차원 입력추정필터

  • 황보승욱 (부산대 대학원, 현재 한국생산기술연구원) ;
  • 홍금식 (부산대학교 기계공학부 및 기계기술연구소) ;
  • 최성린 (국방과학연구소) ;
  • 최재원 (부산대학교 기계공학부 및 기계기술연구소)
  • Published : 1999.08.01

Abstract

In this paper, a tracking algorithm for a maneuvering single target in the presence of multiple data from multiple sensors is investigated. Allowing individual sensors to function by themselves, the estimates from individual sensors on the same target are fused for the purpose of improving the state estimate. The filtering method adopted in the local sensors is the variable dimensional filter with input estimatio technique, which consists of a constant velocity model and a constant acceleration model. A posteriori probability for the maneuvering hypothesis is newly derived. It is shown that the relation function of the a posteriori probability is a function of only the covariance of the fused estimates. Simulation results are provided.

Keywords

References

  1. 96 Global Positioning System Workshop 논문집 연합형 칼만필터를 이용한 다중센서 통합기법 김진원;박규철;지규인;이장규
  2. 한국항공우주학회지 v.23 no.5 제어입력을 갖는 FIR필터를 이용한 기동표적의 추적 민병윤;권오규;유경상
  3. 한국항공우주학회지 v.26 no.2 적응 칼만필터를 이용한 MTI 레이더의 이동표적 추적기법 박인환;조설;조겸래
  4. 한국항공우주학회지 v.24 no.4 입력 추정 필터를 위한 새로운 감지 기법 이훈구;탁민제
  5. Applied Optimal Estimation A. Gelb
  6. Stochastic Process and Filtering Theory A. H. Jazwinsky
  7. Probability, Random Variables and Stochastic Processes A. Papoulis
  8. IEEE Trans. Aerosp. Electron. Syst. v.23 no.6 A faulttolerant multisensor navigation system design B. D. Brumback;M. D. Srianth
  9. IEEE Trans. Automat. Control. v.24 no.6 An algorithm for tracking multiple targets D. B. Reid
  10. Optimal Estimation F. L. Lewis
  11. IEEE Trans. Automatic Control. v.33 no.1 Decentralized structure for Kalman filtering H. R. Hashemipour;S. Roy;A. J. Laub
  12. IEEE Trans. Automatic : Control. v.24 no.2 Computation and transmission requirements for a decentralized linear-quadratic-gaussian control problem J. L. Speyer
  13. Adaptive Control K. Astrom;B. Wittenmark
  14. IEEE Trans. Aerosp. Electron. Syst. v.26 no.3 Federated square root filter for decentralized parallel processes N. A. Carlson
  15. NAVIGATION : Journal of the Institute of Navigation v.41 no.3 Federated Kalman filter simulation results N. A. Carlson
  16. IEEE Trans. Aerosp. Electron. Syst. v.23 no.3 Tracking maneuvering target using input estimation P. L. Bogler
  17. Stochastic Models, Estimation, and Control v.Ⅰ P S. Maybeck
  18. IEEE Trans. Aerosp. Electron. Syst. v.6 no.4 Estimating optimal tracking filter performance for manned maneuvering targets R. A. Singer
  19. Multiple-Target Tracking with Radar Applications S. S. Blackman
  20. IEEE Trans. Aerosp. Electron. Syst. v.23 no.1 Decentralized filtering and redundancy management for multisensor navigation T. Kerr
  21. IEEE Trans. Aerosp. Electron. Syst. v.18 no.5 Variable dimension filter for maneuvering target tracking Y. Bar-Shalom;K. Birmiwal
  22. Multitarget-Multisensor Tracking : Advanced Applications Y. Bar-Shalom
  23. NAVIGATION : Journal of the Institute of Navigation v.40 no.1 Comparison and analysis of centralized. decentralized and federated Kalman filters Y. Gao;E. J. Krakiwsky;M. A. Abousalem
  24. IEEE Trans. Aerosp. Electron. Syst. v.15 no.3 A Kalman filter based tracking scheme with input estimation Y. T. Chan;A. G. C. Hu;J. B. Plant
  25. IEEE Trans. Aerosp. Electron. Syst. v.31 no.1 Tracking using the variable dimension filter with input estimation Y. H. Park;J. H. Seo;J. G. Lee