Abstract
The minimum permanent and the set of minimizing matrices over the face of the polytope n of all doubly stochastic matrices of order n determined by any staircase matrix was determined in [4] in terms of some parameter called frame. A staircase matrix can be described very simply as a Ferrers matrix by its row sum vector. In this paper, some simple exposition of the permanent minimization problem over the faces determined by Ferrers matrices of the polytope of n are presented in terms of row sum vectors along with simple proofs.