THE STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF PAIRWISE QUADRANT DEPENDENT RANDOM VARIABLES

  • Published : 1999.01.01

Abstract

We derive the almost sure convergence for weighted sums of random variables which are either pairwise positive quadrant dependent or pairwise positive quadrant dependent or pairwise negative quadrant dependent and then apply this result to obtain the almost sure convergence of weighted averages. e also extend some results on the strong law of large numbers for pairwise independent identically distributed random variables established in Petrov to the weighted sums of pairwise negative quadrant dependent random variables.

Keywords

References

  1. Statist. Probab. Lett. v.7 A note on the strong law of large numbers for positively dependent random variables Birkel, T.
  2. Statist. Probab. Lett. v.14 Laws of large numbers under dependence assumptions Birkel, T.
  3. Comm. Statist. A. v.10 no.8 Some concepts of multivariate dependence Block, H. W.;Ting M. L.
  4. Ann. Probab. v.10 Some concepts of negative dependence Block, H. W.;Savits, T. H.;Shaked, M.
  5. Acta Math. Hung v.42 no.3-4 On the strong law of large numbers for pairwise independent random variables Csorgo, S.;Tandori, K.;Totik, V.
  6. Comm. Statist. A v.10 no.4 Multivariate negative dependence Ebrahimi, N.;Ghosh, M.
  7. J. Multi. Anal. v.13 On the laws of large nembers for nonnegative random variables Etemadi, N.
  8. J. Multi. Anal. v.13 Stability of sums of weighted nonnegative random variables Etemadi, N.
  9. J. Multi. Anal. v.10 Classes of orderings of measures and related correlation inequalities. Ⅰ. Multivariate totally positive distribution Karlin, S.;Rinott, Y.
  10. Ann. Math. Statist. v.37 Some concepts of dependence Lehmann, E. L.
  11. Statist. Probab. Lett. v.15 A note on the almost sure convergence of sums of negatively dependent random variables Matula, P.
  12. Sums of Independent Random Variables Petrov, V. V.
  13. Statist. Probab. Lett. v.26 On the strong law of large numbers Petrov, V. V.