A MATRIX THEOREM AND FURTHER IMPROVEMENT OF THE STILES' SUBSERIES THEOREM

  • Yoo, Won-Sok (Department of Applied Mathematics Kum-oh National University of Technology)
  • Published : 1999.03.01

Abstract

In this paper, we obtain a matrix theorem which will be widely used in several theory and give it's applications. In particular, we present a further improvement of the improved Stile's theorem.

Keywords

References

  1. Lecture Notes in Math. v.1113 Matrix Methods in Analysis P. Antosik;C. Swartz
  2. Rend. Inst. Matem. v.18 On a theorem of Gelfand and a new proof of the Orlicz-Pettis theorem B. Basit
  3. C. R. Acad. Sci. v.274 Sur les suites uniformement convergentes dans un espace de Banach J. Brooks
  4. Contemp. Math. v.2 The Orlicz-Pettis theorem N. J. Kalton
  5. Israel J. Math. v.10 Subseries convergence in topological groups and vector measures N. J. Kalton
  6. Lecture Notes in Math. v.935 Counterexamples in Topological Vector Spaces S. M. Khaleelulla
  7. Northeastern Math. J. v.11 no.3 An Improvement of Stiles' Orlitcz-Pettis Theorem R. Li;M. H. Cho
  8. Acta Sci. Math. v.58 A nonlinear Schur Theorem R. Li;C. Swartz
  9. Studia Sci. Math, Hungar. v.27 Spaces for which the uniform boundedness principle holds R. Li;C. Swartz
  10. Bull. Soc. Math. Supp. 1. Mem. Unconditional Convergence and the Vitali-Hahn-Saks Theorem A. P. Robertson
  11. Israel J. Math. v.8 On subseries convergence in F-spaces W. J. Stiles
  12. Rend. Inst. Matem. v.20 A generalization of Stiles' Orlicz-Pettis theorem C. Swartz
  13. Math. Z. v.163 A generalized Orlicz-Pettis theorem and applications C. Swartz
  14. Ann. Inst. Fourier v.20 L'intergration parrapport a une measure de Radon vectorielle G. Thomas
  15. Modern Methods in Topological Vector Spaces A. Wilansky