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A MATRIX THEOREM AND
FURTHER IMPROVEMENT OF THE
STILES’ SUBSERIES ;THEOREM

. WoON SOK Y00

ABSTRACT. In this paper, we obtain a matrix theorem which will

be W1dely used in several theory and g:ve it’s applications. In par-

ticular, we present a further improvement of the improved Stiles’
- theorem.

1. Introduction

As stated in Kalton (4], the Stiles’ subseries theorem [I1] was a
very important and significant departure from earlier Orlicz-Pettis type
theorems and, therefore, the original Stiles theorem was generalized by
Kalton [5] (1971), Basit [2] (1986) and Swartz [12] (1988), hut all of
these results established only for complete metric linear spaces, In
1995, Li and Cho [7] gave a substantial improvement for Stiles type
result by dropping both conditions of the metrizability .of spaces and
the continuity of coordinate functionals in the past results. However,
this result could not drop the completeness condition.

The main object of this paper is to obtain a matrix theorem which
will be widely used in several theory and, by using this result, to present
a further improvement of the improved Stiles’ theorem Wlnch is given
in [7].

In section 2 we introduce the very useful result concex;nmg uniform
convergence of the series whose terms are entries in each row of an
infinite matrix over an abelian topological group and then g;ve sorne
applications of that result. In section 3, we improve the recent result in
[7] so that the conclusion of Stiles theorem holds without any restriction
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for the concerned space. Thus, in the view of extension of the concerned
space, we have obtained the best and, hence, the last result.

2. A matrix theorem in abelian topological groups

Let G be an abelian topological group. If {z;} is a sequence in G,
we say that the series Z;L z; is subseries convergent in G if for each
subsequence {z;, } of {z;}, the series 3 72 | ;, converges in G. If A is
an infinite subset of N and Z;‘;l z; is subseries convergent in G, we
write ) .- A T; for the sum of the series 3°}7 | z;,, where the elements
of A have been arranged in a subsequence j; < jo < ---. If Ais a
finite subset of N, the meaning of } jea Tj is clear.

A series Zf__l z;; in G is said to converge uniformly for i € N if

ILm Z;’;n z;; = 0 uniformly for 7 € N, that is, for every neighborhood
n—oo

U of 0 € G there is an ng € N such that Z;’;n z;; € U whenever
n>ngandieN.

We begin with the following lemma.

LEMMA 1 (Antosik-Mikusinski Theorem ([1],[9])). Let G be an abel-
ian topological group and z;; € G for i,j € N. Suppose
(I) 11_1}120 z;; = x; exists for each j and
(IT) for each increasing sequence {m;} of positive integers there is
a subsequence {n;} of {m;} such that {E;’il a:inj}zl is a
Cauchy sequence.

Then lim z;; = x; uniformly for j € N. In particular,
100
lim limz;; = lim limz;; =0 and limz; = 0.
1—00 00 oo i—00 1—00
By using the above lemma, we can obtain the following matrix theo-
rem which is a generalization of the Antosik-Swartz theorem ([1], The-

orem 8.1).

THEOREM 2. Let G be an abelian topological group and Taj € G
for all j € N and a € I, where I is an index set. Suppose that for
each o € I the series Z;’f’__l Zo; Is subseries convergent and for each
sequence {an} in I there exists a subsequence {an,} of {a,} such that

lim 3. A Za, ;= T exists for each non-empty subset A of N. Then
i—00 *
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. liin Y jea Taj = 0 uniformly for @ € I and, in particular, for ev-
min Q~»00 5 .
ery non-empty subset A of N the series 3 ;c o Taj converges uniformly

fora e I.

Proof. Suppose that hm Z To; = 0 is not uniform with re-

spect to a € I. Then there is a nelghborhood U of 0 € G such that:
(%) for any ng € N there exist a subset Ag of N and an a € I such
that min Ag¢ > ng but }: ZToj € U.
j€EDo :

- Pick a neighborhood V' of 0 for which V4V C U. By (*), there exist

a subset A; of N and an a; € I such that min A; > 1 but Z Tayj &
jeds
U. But, if m is a sufficiently large integer, then Z Za,; € V and,
J€A17.7>m

therefore, Z To,j &V, ie., there exist a finite subset A; of N
j€dy,jsm

and an a; € I such that min A; > 1 but Z Ty & V. Similarly,

FEL
there exist a finite subset A of Nandanoag € I satlsfymg min Ap >

max A; and }: Ta,; € V. Continuing this construction we have a
JED2

sequence {A,} of finite subsets of N and a sequence {a,} in I such

that min A, 47 > max A, and

(*%) Z Za,; €V forallneN.
€D,

There exists a subsequence {axn, } of {an} such that llm Z Tanj =

. JGA
z A exists for each non—empty subset A of N. Now consider the matrix

[ Z xanij] ik

jeAnk )

For each k, lim E Ta,,j = Ta,, exists. Let {k;} be an increasing
2=—+00
5€ D
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o
sequence of positive integers. Then letting A = U An,,, we have
=1

o0
§ : § : xanij=§ :zanij

I=1j€4n,, j€A
oo
for each ¢, and 113{.102 Z Tan,j = }if%,‘oz Tqa,,j = TA exists.
l=1j6Ank’ jea
Thus, by Lemma 1, ,lif& Z Za,,; = 0 and, therefore, Z Za, ;€
€A, €A,
V for sufficiently large i. This contradicts (**) and the proof is com-
plete. O

As an immediate consequence of Theorem 2, we have the following
useful result.

COROLLARY 3. Let G be an abelian topological group and z;; € G
for all i, j € N. Suppose that for each i € N the series Z;f’:l x;; is sub-

series convergent and for each non-empty subset A of N, lim > jen Tij
11— 00

= za exists. Then minhzrkn—-)oo » jeaTij = 0 uniformly for ¢ € N and,

in particular, for every non-empty subset A of N the series > jen Tij
converges uniformly for i € N.

There is a famous version of the classical Schur lemma asserts that a
sequence in [! converges weakly if and only if it converges strongly, i.e.,
converges in norm. This result and some of its more general forms have
found many applications in functional analysis; for example, many of
the proofs of the Orlicz-Pettis theorem, including the original proof of
Pettis, use the Schur lemma in some form. Similarly, Phillips lemma
has many applications in both measure theory and functional analysis.

Both of Schur lemma and Phillips lemma have been generalized to
various abstract settings ([1],[8],[11],[15]). The most general and pow-
erful result was obtained by Li Ronglu and C. Swartz recently ([8]) but
this is a very abstract result and, in view of applications, the Antosik-
Swartz theorem ([1], Theorem 8.1) is an excellent generalization of both
Schur lemma and Phillips lemma. Fortunately, we would like to show
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that the Antosik-Swartz theorem is also a special case of our Theorem
2. '

COROLLARY 4 ([1], Theorem 8.1). Let G he an abelian topological
group and z;; € G for all i, j € N. Assume that the rows of the matrix

(@ij)s,; are subseries convergent and lim Tij = Z; exists for eacb jeN.
T OO

If lim de A Zij = T exists for each non-empty subset A of N, then
L=y OO

the following hold. -

(1) Thé series 322, x; is subseries convergent.

(2) hm Zye ATij = Ljen & uniformly for each non-empty subset
A of N,

Proof. (1) By Corollary 3, the series Z T3; converges umfarmly for

F=1
i€ N Therefore,

T lim lim T = h =k =
Soe= MW@Z i ,_f&nlangoZ% mZ% =N
j=1 F=1 JEN

The same argument is valid for every subsenes of the serdes z :z:g e,

J=1
. OO ’

the series Z x; is subseries convergent.
Cg=1
(2). Let U be a neighborhood of 0 in G Take any symmetric and
closed neighborhood V of 0 € G for which V + V +V C U. Since
lim - 3. \@i; = 0 uniformly fori & N by Corollary 3 there ex:sts_

min A->00

an ng € N such that L
Z T € V.

JGA:]>n0

foraﬂACNandzEN and so

Z z; € V.

]GA,j>no - -
for.all A C N. Choose again a nelghborhood W Of 0e G’ for Whmh
W+w +- W C V. Since hm n 2 = ¥ exists for each j, there is

ng t!mes : )
an iy € N such that
12> 9= Xy —x; €W, 1<J < ng.
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Thus, if ¢ > iy, then
PIRETEEDY g EWHWH---+WCV

JEA,j<ng J€A,j<no no times
for all A C N so that

inj—ij

JEA JEA
R TP IRECED DS ER D DI YT S
J€A,j<ng JEA,j<no JEA,j>ne JEA,j>no
eV+V+VICU
for all ACN. 0O

We would like to emphasize that our Theorem 2 gave a powerful
result for a general matrix (Zaj)acr,jen, where I is an index set which
contains N as a special case, i.e., the usual matrix (xij),-,jeN is a special
case of our general matrix (Zoj)acrs,jen. Note that our general result
Theorem 2 contains some important results which can not be obtained
by the similar results about usual matrix (45)s,jen. To see this, recall
the following Thomas theorem ([13], [14)):

Let 2 be a compact space and {f;} is a sequence of continuous
scalar functions on €. If the series Z‘;’;l f; is subseries convergent
in the topology of pointwise convergence on (2, then Z;’il f; is also
subseries convergent in the topology of uniform convergence on .

It is well known that a sequentially compact space need not be com-
pact and of course, a compact space need not be sequentially compact.
Our Theorem 2 just contains a Thomas type result as a special case.
A function f from a topological space Q into a topological space G is
said to be sequentially continuous if {w,} is a sequence in  such that
wn — w € , then f(w,) — f(w) in G. Clearly, a continuous func-
tion must be sequentially continuous but, in general, a sequentially
continuous function need not be continuous, e.g., if a locally convex
space X is not Mazur, then there exist sequentially continuous linear
functionals on X which are not continuous. Fortunately, our Thomas
type theorem just give a result for the family of sequentially contin-
uous functions, though the Thomas theorem is a result only about
continuous functions.
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_THEOREM 5, Let ) be a sequentially compact space and SC(Q2, G)
the family of sequentially continuous functions from €} into an abelian
topological group G. If a series y 22, f; on SC(Q, G) is subseries con-
vergent in the topology of pointwise convergence on (), then Z] 1 f5

is also subseries convergent-in the topology of uniform convergence on
Q. v

Proof. Denoté that z,; = fj(w) for v € Q and j € N. Since the
o o] ’ .

series Z f; is subseries convergent in the topology of pointwise con-
=1
vergence on {2, if A is a non-empty subset of N, then there exists
an fa € SC(Q,G) such that ij(w) fa(w) for all w € Q, ie.,
j€A

Z Zw;j = fa(w) for all w € Q. Let {wn} be a sequence in Q Then
j€A
there exist a subsequence {wy,} of {w,} and an w € Q such that

limw,, = w, since Q is sequentially compact. Therefore, if A is a
1—>00

non-empty subset of N, then

zl_l)r{)loz an i= hm Z fj(wn ) - hm fA(wnz) = fA(w)7
JjE€A jGA

since fa € SC(Q,G) and wy,, — win §. Th.ls shows that the general-

ized matrix (Zw;)wen,jen satisfies all of hypothesis of Theorem 2 and

the desired follows from Theorem 2 immediately. O

3. Improved Stiles’ subseries theorem

Let X be a topological vector space and {fi} a sequence of linear
functionals on X. A series 322, z; in X is said to be subseries w{fx}-
convergent if for every increasing sequence {jm} in N there exists an
o € X such that 35,0, fu(z;,,) = fr(z) for all k € N. ‘

A basis for a topological vector space X is a sequence {ex} in X
such that each € X has a unique representation z = 3 32, trex. A
basis {ex} of X is called a Schauder basis if the coordinate functionals
of {er} are continuous ([15]). If X is a Fréchet space, i.e., complete
metric linear space, then every basis for X is a Schauder basis; but
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there exists a normed space having a basis which is not a Schauder
basis ([6]).
We now present an improvement of the main result in [7].

THEOREM 6. Let X be a topological vector space with a basis {ex}
and {fr} the sequence of coordinate functionals on X which are deter-
mined by {ex}. If a series Z;’il z; in X is subseries w{ fx}-convergent,
then Z;‘;l zj is also subseries convergent in the original topology of

00 i
Proof. Foreachz € X, z = ka(:c)ek. Letting z;; = Z fr(zj)ek,

k=1 k=1
o0
consider the matrix (z;;); ;. For each j, ilix&zij = kzlfk(a:j)ek =z
and, hence, if A is a finite subset of N, then 111}1{.10 Z 2 = Z x;.
JEA JEA
o0
Suppose A is an infinite subset of N. Since the series Z x; is subseries
Jj=1
w{ fr}-convergent, there exists an za € X such that Z frlz;) =
JjEA
oo
fe(za) for all k. But ka(a:A)ek = ZA, SO
k=1 . o
1 (3
Jim> = Jim 3 [Z f “’””‘”“J = Jm 3" fulza)es = aa.
jea jea Lk=1 k=1

oo o0 7
By Theorem 2, the series Z Zi; = Z [Z fr (a:j)ek} converges uni-
j=1 j=1 Lk=1

formly for 7 € N. Therefore,
n n o) [ 7

EOIUEEED 3] ST EERETS ol ST
]:

j=1 Lk=1 j=1

-

k=1
i n i [ 0o
= lim lim ka(a:j)ek = lim Z ka(xj)ek
11— ooN—00 100
k=1 | j=1 k=1 _j=1
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= 11}_)!&2 fe(zn)er = Z fr(zn)er = zn,

k=1 k=1
o0 <
ie., Z z; = zn. The same argument is valid for any subseries Z Tj,
j=1 k=1
[e o] B >
of the series sz. In fact, if the series ij is subseries w{fx}-
=t =1
o0

convergent, then the subseries Z z;, is also subseries w{fi}- conver-
k=1

o0 e
gent so 2 x;, converges in the original topology of X. O
k=1

REMARK. As stated in section 1, Stiles’ result was an expressive
departure from earlier results. Especially, our improvement of Stiles’
result in this paper shows that basis sequences are powerful even if the
concerned spaces are neither metric nor locally convex.
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