1MeV 인 이온 주입시 RTA에 의한 미세결함 특성과 latch-up 면역에 관한 구조 연구

A Study on the Micro-defects Characteristics and Latch-up Immune Structure by RTA in 1MeV P Ion Implantation

  • 노병규 (건국대학교 전자공학과) ;
  • 윤석범 (공주문화대학 전자통신과)
  • 발행 : 1998.08.01

초록

인(Phosphorus)을 1MeV로 이온 주입한 후 RTA를 실시하여 미세결함의 특성을 조사하고, 면저항, SRP, SIMS, XTEM 분석과 CMOS 구조에서 래치업 특성을 모의 실험하였다. 도즈량이 증가할수록 면저항은 낮아지고, Rp값은 도즈량이 $1{\times}10^{13}/cm^2,\;5{\times}10^{13}/cm^2,\;1{\times}10^{14}/cm^2$일때 각각 $1.15{\mu}m,\;1.15{\mu},\;1.10{\mu}m$로 나타났다. SIMS 측정결과는 열처리 시간이 길수록 농도의 최대치가 표면으로부터 깊어지고, 농도 또한 낮아짐을 확인하였다. XTEM 분석 결과는 열처리 전에는 결함측정이 불가능했으나, 측정되지 많은 미세결함이 열처리 후 이차결함으로 성장한 것으로 조사되었다. 모의 실험은 buried layer와 connecting layer 구조를 사용하였으며, buried layer보다 connecting layer가 래치업 특성이 우수함을 확인하였다. Connecting layer의 도즈량이 $1{\times}10^{14}/cm^2$이고 이온주입 에너지가 500KeV일 때 trigger current는 $0.6mA/{\mu}m$이상이었고, trigger voltage는 약 6V로 나타났다. Connecting layer의 이온주입 에너지가 낮을수록 래치업 저감효과가 더욱 우수함을 알 수 있었다.

This paper is studied micro-defect characteristics by phosphorus 1MeV ion implantation and Rs, SRP, SIMS, XTEM for the RTA process was measured and simulated. As the dose is higher, the Rs is lower. When the dose are $1{\times}10^{13}/cm^2,\;5{\times}10^{13}/cm^2,\;1{\times}10^{14}/cm^2$, the Rp are $1.15{\mu}m,\;1.15{\mu},\;1.10{\mu}m$ respectively. As the RTA time is longer, the maximum concentration position is deeper from the surface and the concentration is lower. Before the RTA was done, we didn't observe any defect. But after the RTA process was done, we could observe the RTA process changed the micro-defects into the secondary defects. The simulation using the buried layer and connecting layer structure was performed. As results, the connecting layer had more effect than the buried layer to latch-up immune. Trigger current was more $0.6mA/{\mu}m$ and trigger voltage was 6V at dose $1{\times}10^{14}/cm^2$ and the energy 500KeV of connecting layer Lower connecting layer dose, latch-up immune characteristics was better.

키워드

참고문헌

  1. Nuclear Instruments and Method in Physics Research v.B59;B60 High-energy ion implantation for ULSI Tsukamoto, K.;Komori, S.;Kuroi, T.;Akasaka, Y.
  2. IEEE Electron Dev. Letters v.EDL-4 no.July High density and reduced latch-up susceptibility CMOS technology for VLSI Manoliu, J.;Tseng, F.H.;Woo, B.J.;Meier, T.J.
  3. IEEE Trans, Electron Dev. v.35 no.11 Layout dependence of CMOS latch-up Mennozzi, R.;Selmi, L.;Sangiorgi, E.;Crisenza, G.;Cavioni, T.;Ricco, B.
  4. IEEE IEDM 90-185 Design issues for achieving latchup-free, deep trench-isolated, bulk, non-epitaxial, submicron-CMOS Bhattacharya, S.;Banerya, S.;Lee, J.;Tasch, A.;Chatterjee, A.
  5. IEEE Trans. Electron. Dev. v.30 no.10 N-and P-well optimization for high-speed n-epitaxy CMOS circuits Schwabe, U.;Herbst, H.;Jacobs, E.J.;Takacs, D.
  6. Solid State Technology v.39 no.6 Epi replacement in manufacturing using MeV implantation Borland, John O.;Seidel, Thomas E.
  7. Nuclear Instruments and Method in Physics Research v.B59;B60 Reduction of Secondary Defect Formation in MeV As ion implanted Si(100) Schreutelkamp, R.J.;Lu, W.X.;Liefting, J.R.;Raineri, V.;Custer, J.S.;Saris, F.W.
  8. Proceeding of the Eleventh Internation Conference on Ion Implantation Technology Buried Layer/Connecting Layer High Energy Implantation for Improved CMOS Latch-Up Morris, Wesley;Rubin, leonard;Wristers, Dirk