A New Type of Clustering Problem with Two Objectives

복수 목적함수를 갖는 새로운 형태의 집단분할 문제

  • Received : 19961100
  • Published : 1998.03.31

Abstract

In a classical clustering problem, grouping is done on the basis of similarities or distances (dissimilarities) among the elements. Therefore, the objective is to minimize the variance within each group while maximizing the between-group variance among all groups. In this paper, however, a new class of clustering problem is introduced. We call this a laydown grouping problem (LGP). In LGP, the objective is to minimize both the within-group and between-group variances. Furthermore, the problem is expanded to a multi-dimensional case where the two-way minimization process must be considered for each dimension simultaneously for all measurement characteristics. At first, the problem is assessed by analyzing its variance structures and their complexities by conjecturing that LGP is NP-complete. Then, the simulated annealing (SA) algorithm is applied and the results are compared against that from others.

Keywords