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Abstract

In a dassical clustering problem, grouping is done on the basis of similorities or distances
(dissimilorities) among the elements. Therefore, the objective is to minmize the variance within
eoch group while maximizing the between-group variance among all groups. In this paper,
however, o new class of clustering problem is introduced. We call this a laydown grouping
problem {LGP), In LGP, the objective is fo minimize both the within-group und between-group
variances. Furthermare, the problem is expanded to a mulii-dimensional case where the two-
woy minimization process must be considered for each dimension simulioneously for cll
measurement characteristics. At first, the problem is assessed by analyzing its variance structures
and their complexities by conjecturing that LGP is NP-complete. Then, the simulated cnnealing
(SA) atgorithm is opplied and the results are comparec against that from others.
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1. Intreduction

The clustering, or grouping of similar objects together,
s a well-known topic in mathematical and engineering
fields. The objective of a cluster analysis Is to separate
1 set of objects into constituent clusters in such a way
‘hat according to specified criterion, the members within
zach cluster differ from each other as lile as possible
while a1 the same time members of distinct clusters differ
from each other as much as possible {Spiih 1980}, The
techniques developed in conventional cluster analyses,
however, are aimed at mimimizing the variance within

zsach cluster while maximizing the variance of the cluster

means (that is. the “belween-group variance™), with no
restrictions on the number of objects in each cluster.
In general, the clustering problem in large-scale systems
is known to be NP-complete {Nondeterministic Polynomi-
al-complete) {Park er al. 1988); and thus we must rely
on a heuristic methed to obtain 2 good solution. Simulated
Annealing (SA} is widely used to solve several types of
clustering problems. Park et al. {1988) applied SA to the
clustering problem for finding a partition with minimum
number of vertex sets among feasible partition sets. Klein
and Dubes (1989} reported on experiments in projection
and cluslering using the SA algorithm. By projection. it

means a nottlinear mapping of patterns in high-dimenston-
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al Euclidean space into two-dimensional Euclidean space.
Selim and Alsultan {1991) also applied SA to the problem
of clustering ¢n data points {patterns) into C clusters.
In the textile field, there is a special case of the
clustering problem that requires that the sizes of the
clusters are identical to each other and both the within-
group and between-group variances are small. In cotion
spinning, the laydowns of cotton bales are formed in order
10 maintain uniform yarn quality with the following

objectives

. The means of g laydowns (clusters) must be as
nearly equal as possible with respect to all charac-
teristics (e.g., fineness, sirength, elongation, length,

and color, etc.).

(%]

. Simultaneously, the within-group variance of each
laydown must be as small as possible with respect
to each characteristic; moreover the within-group
variances for all clusters must be as nearly equal as

possible.

This problem is practical and yet theoretically challeng-
-ng since the entire U.S. cotton crop is now high volume
:nstrument (HVI) tested; and the information on coiton
characterislics is available o all buyers and users, with
litle or no guidance on how the numbers should be
analyzed to achieve the desired poals.

To the best of our knowledge, few studies have been
done 1o provide a good solution for the laydown grouping
problem (LGP}, Recently, an investigation was performed
on the topic by Robin and Suh {1993) at North Carolina
State University supported by grants from Cotton Incor-
porated and the National Textile Center. They used the
branch and bound (BAB) algorithm with several heuristic
tules for the one-dimensional case {handling only one
characteristic, strength), and they extended it to multidi-
mensicnal cases that simultaneously account for two
additicnal characteristics (namely, micronaire and length)

by using a decent algorithm in order o optimize the

el

remaining characteristics based on the given solution
obtained for the one-dimensional case.

In this paper, we develop the theories abour LGP and
apply SA algorithm to this LGP. First, LGP is carefully
asséssed and then appropriate SA algerithm for LGP is
developed. This paper is organized as follows. In Section
2, we analyze the problem structure and the computational
complexity of the laydown grouping problem, and we
conjecture that this problem is NP-complete. In Section
3, we apply SA to the LGP. Finally in Section 4 we draw

conclusions and recommend further research.

2. Analysis of the Laydown Grouping
Problem (LGP)

2.1 Varfance Structure of LGP

Since both objectives in Section | are concerned with
variances of the bale characteristics in LGP, it is necessary
to analyze the variance structure of LGP. Suppose we
have N bales to be divided into g clusters (laydowns),
and each laydown has » bales. Therefore, N = nx g let
m; the fth laydown mean, let m be the grand mean, let
V; be the [th laydown within-group variance, let V,, betbe
the between-group variance of all laydowns, and let C i
be the value of one characteristic {for example, strength)
of the jth bale in the /th laydown. Then we can easily
obtain the following statistics from HVI data --

s ¢, m=L33c ()
m - ' = — .
{ nj:l f i B L i i

LSy, Ve Y. @
V! = il JE] ij'ms y bet = 2- 1 ||’:| m!‘ mr.

Using the additive property of the sum of squares in
the analysis of variance (ANOVA), we obtuin the toral
sum of squares, TSS, by adding the sum of squares for
treatments, SSTR, and the error sum of squares, SSE, as
follows:

TS5 = SS8TR + 8SE
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Let AV = 1S 1, and BV = ¥, . then we have the
gk
linear relationship between AV and BV as follows:

TSS = nlg- DBV + gin- 1)AV,
n{g-1) v TSS

“gntl) ) Tgn-D -aBY -5

AV =

This relationship is shown in Figure 1. Thus. if we
mimmize AV then BV K maximized, and vice versa
Therefore. if either AY or BV is given. our task is to
seek the hest ser of clusters at the point p on the line in
figure 1.

MEANS OF WTTHIN-GROUP VARIANCES

to minimize the largest within-group variance among all
lavdowns. To formalize this, we arbitrasily number the
bales 1. 2, ... N: and we let € denote the characteristic
of interest for bale #i = 1. ... N} so that

Cp; = C if and only if bale 7 is the jth bale in the ih

- laydown,

noand i=1,.... N. We let X=(X,]
be a N X g binary matrix defining an assignment of bales

fori=l...g Fl..

to laydowns so that
X — 1, if bale 7 is assigned laydown I,
P70, otherwise,
for 1<i<XN and 1<1<g. Thus we can formulate the

quantities m and V {for { = ... g} together with m.
V.. and AV as function of the bale-assignment matrix X

L
b
p
AV (e
. P
Av' [
0 .
nv BY

Wa  BETWEEN-GROUP VARIANCE

Figure 1. Linear relationship between AV and BV

2.2 Objective Function of LGP

Because of the linear relationship in Figure 1. with a
given value of BV, AV is immediately determined. That
is, if a between-group variance is fixed, the {irst objective
of LGP in Seciion 1 is fixed. Therefore.

what we have to do is to satisfy the second objective
in Section 1. One way to meet this second objective is

as follows:
¥ .
m, = m{X) = S IXC o forl=lig (3
Z
. 1 )
i - if(X):n_l__:[xdcr m{XF, for I= 1. (4)
7m0t 013y ()
o gs m e Lo
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1
-1

g, - Vb&,(X}z;—-él{m;{)()—ﬁf)()]z ®)

AV - AV(X)=§ $V0. @
=i

Thus, by using the notation in (3)-{7), we can write a
mathematical model of LGP as follows:

(Q1) Minimize Z(X) = mfaxV;(X) (8)

N
subject 0 ¥ Xy=n=Nfg, = 1.,¢
=1

g
T X,=1, i= 1., N
I=l

Vye (X)<BVF,

X, €01} fori=1,.. Nandi=1.,¢

where BV* is an upper hmit on the between-group
variance and Hs corresponding value, AV*, is the
associated lower lmit on the average within-group
vartance. Note that the inequality constraint V, (X)<BV#*
allows us to rade some portion of rotal variance from
the between-group variance to the within-group variances
{for example, in Figure 1, p* moved to p). Now we set
up a definition of better solutionte meet both objectives
in Section 1, simultanecusly.

Let AV* be the average within-group variance cor-
responding to a given upper limit BV* Consider two
erbitrary solution matrices )(.T and X of the problem Q1
0 that

Vo (X) <BY* and V, (X' ) <Bvx.

However, it is not necessarily true that

VX0 = Vi XY or AV00 = AV* or AVXT)= ave,

Definition 1. Let VT and V be the vectors of within-
group variances obfained by XT and X, respectively: 'V
= V,00.... V0] and VE=[vXh,, vixh) e

Vv (X)<BV*, v (XD =Bvs,

and

2 ; 2 .
p VIXT)- aV'F < 204V,
then X1 is a better solution 10 problem Q1 than X.S

This definition is based on a preference for more
consistent (that is, less variable) within-group variances
relative to the target value AV* even if the average
within-group variance AVT for the bale assignment X!
is larger than the average within-group variance for the
bale assignment X.

According to the definition above, we introduce an
alternative objective function of Q1 as follows:

@' Minimize zT00 = Ey0-avE @)
=

N
subject to ¥ Xy=n=Nfg, I=1., g
=t

2

T X=1, i= 1. N,

1=1

Vv, (X) BV,

X,€10,1) fori=1l. Nandi=tf.,g

The new objective function (9} in problem Qlt avoids
extreme  disparities among the within-group variances.
Note that the objective function (8} of problem Q1 does
not prevent such disparities since it only tends to minimize
the largest within-group variance. However, (9} is not
guaranteed to yield a solution to the LGP that is always
preferable in practice to the solution obtamed with (81,

Suppose there exists a perfect solution whose all within-
group variances are the same while satisfying V., = BV
Then, this perfect solution is the only optimal solution
considered as the best for both problems Q1 and QIT.
Therefore, as long as the perfect solution is concerned,
both objective functions (8} and (9) are asymptotically the
same. However, since there is no such a perfect solution
in a real problem, which objective function is betier is
the matter of user’s preference in practical point of view.
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2.3. Complexity of LGP

Note that the objective function in Q1 contains the
variance terms V{X} which make it extremely difficult to
compare the complexity of QI with other optimization
problems, In order to find the complexity of LGP, we
establish a femma which tells us that any sample variance
term can be represented as the sum of squared distances

between all {distinet) pairs of the sample values.

Lemma 2. For any set of » sample values {x,c®, i
_ n
= L., n} with sample mean x= (/) T x,. we have
iz

n

T x-xF =(1/20) Z Etr 5P

I=t f=1 J‘"

Proot. Let I, denote the =X n identity matrix, and let
U, denote the #Xn matrix with every element equal to
i. Let

X = {x, 5. x]

denote the 1X# vector where fth element is x, { = 1,

2,..0. It is easy to check that
# . 1
EI (- xf = x(In-HUn) X (10}
and that
L E ;(x-x)l = L}n: E(xz-Zx v
Dn T T g ST
e le
B E]l} n ;': _E{xixj
= xlnx’-%xUnx’
1 l
= X(In-ﬁUn)x

(x P by (1),

1—

which completes the proof. 2

This lemma allows us to reexpress any variance V{))
in terms of a quadratic form whose complexity is easy
to analyze. Using Lemma 2, both variance terms V{X)
{in the objective function} and V. (X} (in the third
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M=

constraint} of problem QI can be replaced as follows:

(Ql ) Minimize Zi(X) rnlaxE EdX (1)

1

=1 j=1
N
subject to T X, =n=Nig, =1 g (12)
=1
£ .
1%L P= b, N, (13)
2 Z n LX<V (1)
( '1)u—l1n=l
X,€10,1) for all i, (15)

where d; and D, (X} are the distances of the characteris-

tic values of twe bales C, and C, - ie.,
dy= iC;-C| fori=1..Nandj=1..N;

and of the two laydown means m,(X) and m{X} -- i

£,

lm,(X) - m (0|

N

E CXy- _E Cx,

H

D,

} foru=1,...2 and v=1,...2.

Note that the constant term L2N(N-I}] in Zt(X) is
delered and the LHS of the constraint (14) is nothing but
between-group variance V,(X). Note also that d, is
counted enly if both X, and Xj! variables are not equal
to zero (ie.. when both the ith and the jth bales are in
fih laydown).

Now, based on the linear relationship betsween AV and
BV in Figure 1, we build a following assumption.

Agsumption 3. If we interchange the objective function
(11} and the constraint (14} in Q1% such that

D (X}

43

(Q1” Minimize Z'1X) =

Ti I""JW

A

g8 N
;gg [XCX, ﬂ%

I=1

£

3
It
1
Ey
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Iy
subject to T X, =n=Nig, I=1..¢
i=1
8
3 X,= =1, N
=1
NN .
v 3 7 -
TIdxK, W 1=l g
X,ei0,1} for all i, {,

where WV* is a upper limit of all within variances,
then both problems QII and Q¥ have the same

computational complexity. o

The Assumption 3 is based on the following reasens.

First, both problems QlI and Q1* have the same
siructure of feasible solution spaces. That is, in QI t, we
scek the configuration of laydown grouping which has the
smallest UV (where UV is the largest within-group
variance of that configuration) given by an upper limit
of BV as BV that defines immediately the lower Hmit
of AV by AV}, On the other hand, in Q1*, we seek the
¢onfiguration of laydown grouping which has the smallest
EV given by an upper limit of ¥, as WV* for all L Then
by the Samuelson's inequality (Samuelson 1968}

’ 2
|V,-AV| ism where 5 = | 1/{g - I)E (V- AVY,

we have the lower limit of AV as AV* that defines
immediately the upper limit of BV by BV*. Therefore,
when BV¥ = BV* and UV = WV* we have exactly the
same feasible solution space for both problems.

Secondly, the objective functions of both problems seek
a perfect soluion (if it exisis) whose within-group
variances are all equal. That is, the perfect solution
minimizes both objective functions.

Based on the Assumption 3, we claim the following.

Conjecture 4. The LGP is NP-complete. 2

In order to prove that a problem is NP-complete, -we
must show two things (Papadimitriou and Steigliz 1982,
page 353k

{2) That the problem is in NP.

{b) That a known NP-complete problems is polynomi-
ally transformable to the problem at hand.

For {a), it is clear that LGP is in NP (which is short

for Nondeterministic Polynomial bounded) since a given
proposed solution matrix X can be checked guickly (in
polynomial time) to see if it satisfies all the requirernents
of the problem. That is, the number of steps to check if
X is in feasible region of constraints {12}, (13), and (14)
in QIT' is Ng + Ng + 4Ngfg-1) which is bounded above
by 4Ng?-2Ng = Olng®). For (b), we use the 2-Partition
problem that is NP-complete(Garey and Johnson 1979,
page 47) to see if the 2-Partition can be polynomially
transformable to the LGP represented in problem Q1%
Note that we consider the problem Q1* instead of the
problem QI1 based on the Assumption 3. Thus, we now
minimize the between-group variance instead of minimiz-
ing the maximum within-group variance, Consider the 2-
Partition problem which asks, given ¥ integers A,... A,
if there is a set SC{1, 2,.., N} such that

A= I A= EA (16

JES jes F

where § = L, 2., N} - &

Since the 2-Partition problem is a decision problem we
also changed Q1* into a decision problem by setting Z*
(X)<K, where K is an arbitrary constant. More specifi-
cally, if g=2 and Z*(X)<K, then we have a decision
problem asking ihat, given N bales whose characteristic
values are {C,, C.,..., C.}], is there a subset §.C{1, 2,....
N} such that

L5 &=3 I dy=av a7

where % = {1, 2..., N1 - 5, and AV is the average
of two within-group variances. The reason we seek a
solution to satisfy {17) is that the best solution of breaking
¥ bales into two clusters {with a fixed value of Z*} is

dividing them in such a way that both within-group
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variances are identical (that is, we seek a perfect solution).
Note that the case of g=2 is the simplest problem of LGP.
Tt is clear that (16) is much simpler than (17), but it is
not easy to show that 2-Pariition is polynomially
trasformable to LGP with g=2. In other words, a main

task we have to do is to answer the following question.

Question 5. Given a set SC{1, 2., N}, can we
construct a set §, < |1, 2...., ¥} within polynomial time
such that § and § are a solution of 2-Partition if and
only if S, and S are a solution of LGP with g=2 and
ZHXN=Ka

If the answer is ves, then 2-Partition problem is aothing
but a special case of Q1* when p=2, AV = E AJ.;’2 and
ZHX)<K. &

Furthermore, the original optimization problem Qi* can
be soived in logarithmic time (which is faster than
polynomial tme} by changing K value in the decision
problem of Q1% For example, let X* be the optimal
integer value of Z*(X) such that K* £[0,K]. Then if
K =16, we can point out exact value of K* at most four
times of comparisons by using the bisection search
method. Consequently. based on the assumption that the
Question 5 can be answered, we conjecture that LGP is
NP-complete.

As we discuss for the conjecture above, LGP is
interpreted as the partitioning problem because we have
to partiion N bales into g laydowns. LGP can also be
interpreted as another type of knapsack problem because
we have to minimize Z(X) by allocating N bales to ¢
laydowns with respect to the upper limit on BV*. Note
that a 0-1 Knapsack problem can be polynomially
transformed to 2-Partition problem (Papadimitriou and
Steiglizz 1982, page 373). which means that a 0-1
Knapsack problem is a special case of 2-Partition problem
(of course, a 0-1 Knapsack problem is also NP-complete),

More analysis for the computational complexity of LGP
is done by Lee (1995). Let v be the number of distinct
groupings in LGP, then Lee (1995} drives that ¥ can be

expressed as an explicit function of N and » as follows:

N!

= 18
’ (N1 ) e

The function » grows faster than exponential growth
when N220 and n = 2, 4. Theoretically, Lee (1995) also
showed the exponential growth of » in LGP when g is

fixed and let n—o¢ so N = ng—oo0.

3. Application of SA to LGP

3.1 Simulated Annealing (SA) Algorithm

The Simulated Annealing (SA} algorithm, introduced
independently by Kirkpatrick et al. {i983) and Cémy
(1985), has performed successfully as a general heuristic
algorithm for the solution of large, complex combinatorial
optimization problems. A combinatorial optimization
problem is designated as a pair (£, f) where @ is the
solution space and the cost function f: 2—R* assigns
to each element of 2 a nonnegative real-valued cost. The
minimum of f over the set £ is sought. An optimal
sofution of the problem is obtained once we find an
element i €2, called a global minimum, with the
property fi.<f; for aff i€ 2. The strategy implemented
by SA consists of exploring the solution space starting
from an arbitrary selected solution, or state, and generating
a neighboring state j by perturbing the current state £
Every time a new solution j is generated, its cost f is
evaluated; and the new solution is either accepted with
probability A, or rejected with probability (/ - A4
according, say, to the Metropolis criterion proposed by
Metropolis et al. (1953},

for 4 ;<0
for 4 £70,

— L

A=
ij ¢
- expl-4f,/ T),
where Af; is the difference between the costs at the
new state j and the curremt state f (ie., 4f, = }j £, and
T is a positive control parameter called the emperature.

Thus, there s a nonzero probability of continuing with
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1 state having higher cost than the current state, which
provides the reason why the SA algorithm can avoid being
trapped at local minima. This sequence of trials is repeaied
uniil equilibrium at each temperature T is teached -- ie.,
untii the probability distribution of the configurations (=
states) in & approaches the Boltzmann distribution, which

is given by

. .y def
Pricurrent covfiguration = i} 7T

l , -
= ﬁexp(-f; 'T) for all ie 4,

where Z{T} = I expl- £/ T) is a normalizing factor
Jepending upon ;lfeglemperature T. The temperature T is
owered in sieps until 1t approaches zero, with the system
Jeing allowed to reach equilibrium for each step by
zenerating a sequence of tials in the previously described
way. After termination, the final frozen configuration is
aken as the optimal solution of the combinatorial
Jptimization problem at hand. See Eglese (1950} for
zeneral applications of the SA algorithm,

A=b FEASIBLE REGION

INFEASIBLE REGION

3.2 Objective Function

Based on the linear refationship berween AV and BV,
it is easy to see that if we represent a given solution by
the two coordinates BV and UV, where UV defines the
upper limit (maximum) for all within-group variances, ail
feasible solutions must belong to a region that includes
and is above the line AB in Figure 2, which shows the
solution structure of laydewn grouping problem (LGP).

Note that the vertical axis of Figure 2 represents UV,
which is different from Figure 1. The peint C is a extreme
case that has maximum within-group variance when BV
= 0 {if it exists). For any point that belongs to the line
AB, the within-group variances must be all equal (i.e.
UV = ¥, for all §) since UV = AV on the line AB, Thus,
by the definition of betrer solutionin Section 2.2, any
solution on the ling AB will be the ideal case. However,
it is very difficult to have such an ideal solution with a
large number of bales in a practical situation. Therefore,
we define this ideal solution as a Jlower boundfor for
LGP. Line BC represents the worst case where the largest
UV can possibly be made with a given between-group

variance BY. Note that BC is not necessarily a straight

INFEASIBLE REGION

B=b/a BV

Figure 2. Solution structure of LGP
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‘ine.

For the purpose of evaluating the performance of a
iven set, we consider the following two trivial selutions
;and S..

z
5

1. §,: fust, sort the bale charactenstic values in
increasing order; then assign the first 7 bales 10
laydown 1, the next » bales to laydown 2, and so
on.

2. §: first, sort the bale characteristic values in
increasing order; then assign the first »/2 bales and
the last /2 bales to laydown 1; and repear this

procedure with the remaining N-n bales, and so on.

These two solutions are shown in Figure 2. Tndeed, S,
exemplifies a case where UV is made small at the expense
of BV, whereas §. shows a case where BV is made small
at the expense of UV. We also depict a target solution
5, which is the lower bound of all feasible solutions,
Based on two extreme solutions §, and §., it is clear that
the optimal solution shonld be somewhere between these
two solutions. In problem Gl, we try to minimize UV
with a given upper limit for BV, which rackles the
problem in one direction. However, there should be a way
to antack the problem from both directions by minimizing
4 weighted sum of UV and BV, Therefore, to make an
optima! sclution as close 1o §, as possibie, we want to
minimize both UV and BV simultaneously by using the
control parameters &, and k.. Thus, the obfective function

can be written as
Zw = KUV + kBV. 19

This objective function is identical to the function (7.22)
- {7.23) in Lee (1995) with &, = 2NIN-1} ¢, and k, = 2g
{g-In e and we use {19) as an objective function in

our expenments,
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3.3. Experimental Results Using SA Algorithm

Recall the SA procedure explained in Section 3.1. At
first, we describe a solution-generation mechanism. Let G
= [G,] be a 12l x | 2| stochastic matrix -- Le. all elements
of G are nonnegative and for every solution (state)
€82, LG, =

. T .
J as the destination state when moving from the current

I, where G, is the probability of selecting

state {. We assume that G, is independent of T, in such
a way that
—Lgy

i 0

ifie e
otherwise

where @, is the set of all states j to which we can
move starting from state f. In order to select 2 neighboring
state j, we choose randomly two bales from N samples
and swap these two bales.

For an annealing schedule in LGP, the temperatute 7,
is updated by the geometric law

Ty, = T, with 0¢ ¢ {1,

Initial temperature T,=125 is used. At each temperature
T, the number of replications requited 10 reach an
equilibrium (or stationary) state is called #,,, . Through
sensitivity analysis, we select the parameter values as of
Poguit 7 150 and ¢=090. We also choose the values of
control parameters in {19} as of £=1.0 and k=g.

In this experiment, actual HVI data are used with N=
754, n=29, g=26. For simplicity, before its usage. these
HVI data are standardized by subtracting the overall mean
from each data item; and then the resulting difference is
divided by the standard deviation of the entire data set.
We compared our SA results to Robin's earlier work in
the 3-dimensional case (using three characteristics,
strength, micronaire, and length), when the target within-
group variance (TWV) in Robin's model is mv = 1.2,
Note that m is represented by UV in our notation. In
order to handle the 3-dimensional case, we use a weighted

average of the three characteristics. Thus, the objective
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function {19) has been changed to

H

D
Zug, (W) = T WylkiUVy+ kBY,) (20)

where D = 3 and W, = 1/3 for d =1.2,3.

Figures 3 and 4 represent the laydown means and
within-group variances for the characteristic of micronaire,
respectively, Figures 3 and 4 show thar SA results are
definitely superior to the Robin’s results on both laydown
means and within-group variances. In other words, SA
results have more consistent laydown means and less
variation in within-group variances of all laydowns than
Robin's results do. We also plotted the initial grouping
which is directly clustered from a given HVI data without
any treatment. This depicts how much SA result is
wnproved from initial grouping. Similar results are

obtained for the other two characteristics, strength and

4, Conclusions and Further Research

We introduced a new class of clustering problem with
a multicriteria objective function called laydown grouping
problem (LGPY; and we analyzed the structure of LGP
and its complexity. A definition of a befter solutionin
LGP is proposed. We also conjectured that LGP is a NP-
complete combinatorial optimization problem. The SA
algorithm is applied to LGP using real HVI data. Based
on our experiments, it has been shown that the 5A
atgorithm outperforms the previous methods with respect
1o both the laydown means and the laydown within-group
variances.

We alse bring up several issues for future research.
First, parametric analysis is needed mainly for the
solution-generation mechanism and the annealing schedule

to improve the performance of the SA algorithm in LGP.

length. Secondly, some other newly developed techniques such
as newral networks for combinatorial optimization prob-
lems can be applied to LGP, and the resulis obtained with
these techniques should be compared with those of SA
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Figure 3. Comparisen of laydown means for Micronaire
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SOLID LINE : SA RESULTS
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Figure 4. Comparison of within-group variances for Micronaire

algorithm. Thirdly, the SA procedure of LGP can be

applied to other similar practical problems such as --

1. Military personnel and equipment assignment prob-
lemms to keep all unit forces as nearly egual as
possible in combat effectiveness.

2. Swdent and teacher assignments in the public school
system to achieve more uniform quality of all
schools.

3. Grape-blending problems to achieve uniform wine

qualiry.

Consequently, LGP is a theoretically challenging and

practicatly rewarding problem.
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