References
- Agarwal, B.D. (1980), Analysis and Performance of Fibre Composites, John Wiley & Sons, New York.
- Barten, H.J. (1945), "On the deflection of a cantilever beam", Q. Appl. Math., 2, 168-171, and Q. Appl. Math., 2, 275-276.
- Batoz, J.L. and Dhatt, G. (1979), "Increment displacement algorithms for nonlinear problems", Int. J. Numer. Meth. Engng., 14, 1262-1267. https://doi.org/10.1002/nme.1620140811
- Bisshopp, K.E. and Drucker, D.C. (1945), "Large deflection of cantilever beams", Q, Appl. Math., 3, 272-275. https://doi.org/10.1090/qam/13360
- Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill Book Co., New York.
- Chen, W.F. and Lui, E.M. (1987), Structural Stability, Theory and Implementation, Elsevier Science Publishing Co. Inc., New York.
- Crisfield, M.A. (1981), "A fast incremental/iterative solution procedure that handles 'Snap-Through'", Computers and Structures, 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- Fonder, C.A. and Clough, R.W. (1973), "Explicit additon of rigid-body motions in curved elements", AIAA J., 11(3), 305-312. https://doi.org/10.2514/3.6744
- Gould, P.L. (1985), Finite Element Analysis of Shell of Revolution, Pitman Publishing Inc., London.
- Holden, J.T. (1972), "On the finite deflections ofthin beams", Int. J. Solids & Structures, 8, 1051-1055. https://doi.org/10.1016/0020-7683(72)90069-8
- Holston, A. Jr. (1968), "Buckling of filament-wound cylinders by axial compression", AIAA J., 6(5), 935-936. https://doi.org/10.2514/3.4632
- Lin, Z.M. (1995), Analysis of Pole-Type Structures of Fibre-Reinforced Plastics by Finite Element Method, Ph.D Dissertation, University of Manitoba, Winnipeg, Canada.
- Lock, A.C. and Sabir, A.B. (1973), "Algorithm for the large deflection geometrically nonlinear plane and curved structures", Proceedings of the BruneI Univ. Conference of the Institute of Mathematics and Its Applications held in April, 1972, Edited bby J. T. Whiteman, pp, 483-494.
- Navaratna, D.R., Pian, T.H.H. and Wittmer, E.A. (1968), "Stability analysis of shell of revolution by the finite-element method", AIAA J., 6(2), 355-360. https://doi.org/10.2514/3.4502
- Novozhilov, V.V. (1961), Theory of Elasticity, Translated by J. K. Lusher, Pergamon Press, New York.
- Reddy, J.N. and Liu, C.F. (1985), "A high-order shear deformation theory of laminated elastic shells, Int. J. Engng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
- Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solids Structures, 15, 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw Hill, Toronoto.
- Ugural, A.C. and Cheng, S. (1968), "Buckling of composite cylindrical shells under pure bending", AlAA J., 6(2), 349-354.
- Wang, T.M. (1969), "Non-linear bending of beams with uniformly distributed loads", Int. J. NonLinear Mechanics, 4, 389-395. https://doi.org/10.1016/0020-7462(69)90034-1
- William Weaver, Jr. and Johnston, P.R. (1985), Finite Elements for Structural Analysis, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, U.S.A.
- Zienkiewicz, O.C. (1971), The Finite Element Method in Engineering Science, McGraw-Hill, London.
Cited by
- The effect of semi-rigid connections on the dynamic behavior of tapered composite GFRP poles vol.81, pp.1, 2007, https://doi.org/10.1016/j.compstruct.2006.07.015
- Improving damage resistance of a composite pole using a computer experiment strategy vol.164, pp.3, 2011, https://doi.org/10.1680/eacm.2011.164.3.171
- Static and dynamic characteristics of multi-cell jointed GFRP wind turbine towers vol.90, pp.1, 2009, https://doi.org/10.1016/j.compstruct.2009.01.005
- An Experimental Survey of the Static and Dynamic Behavior of Jointed Composite GFRP Tapered Poles vol.14, pp.3, 2007, https://doi.org/10.1080/15376490600734849