DOI QR코드

DOI QR Code

The Synthesis of Vanadium-Doped Forsterite by the $H_2O_2$-Assisted Sol-Gel Method, and the Growth of Single Crystals of Vanadium-Doped Forsterite by the Floating Zone Method


Abstract

Polycrystalline powder of vanadium-doped forsterite (Vδ $Mg_2SiO_4$) was synthesized by the $H_2O_2$-assisted sol-gel method. The vanadium dopant, which was added as VO$(OMe)_3$ in methanol, went through several redox reactions as the sol-gel reaction proceeded. Upon adding VO$(OMe)_3$ to a mixture of $Mg(OMe)_2$ and Si$(OEt)_4$ in methanol, V(V) reduced to V(IV). As hydrolysis reaction proceeded, the V(IV) oxidized all back to V(V). Apparently, some of the V(V) reduced to V(IV) during subsequent gelation by condensation reaction. The V(IV) remained even after heat treatment of the gel in highly oxidizing atmosphere. The crystallization of the xerogel around 880 ℃ readily produced single phase forsterite without any minor phase. Using the polycrystalline powder as feeding stock, single crystals of vanadium-doped forsterite were grown by the floating zone method in oxidizing or reducing atmosphere. The doping was limited in low level because of the high partitioning of the vanadium in liquid phase during melting. The greenish single crystal absorbed visible light of 700∼1100 nm. But, no emission was obtained in near infrared range.

Keywords

References

  1. Rock-Forming Minerals v.1A Deer, W. A;Howie, R. A;Zussman, J
  2. Appl. Phys. Lett v.52 Petricevic, V;Gayen, S. K;Alfano, R. R;Yamagishi, K;Anazai, H;Yamaguchi, Y
  3. J. Chem. Phys v.101 no.5 Budil, D. E;Park,D. G;Burlitch, J. M;Geray, R. F;Diekmann, R;Freed, J. H
  4. Phys. Rev v.123 Mainman, T. H;Hoskins, R. H;D'Haenens, I. T;Asawa, C. K;Evtuhov, V
  5. IEEE J. Quantum Elect v.QE16 no.12 Walling, J. C;Peterson, O. G;jenssen, H. P;Morris, R. C;O'dell, E. W
  6. Chem. Mater v.5 Park, D. G;Burlitch, J. M;Geray, R. F;Dieckmann, R;Barber, D. B;Pollock, C. R
  7. Chem. Mater v.6 no.11 Park, D. G;Duchamp, J. C;Burlitch, J. M;Duncan, t. M
  8. J. Am. Ceramic Soc v.77 no.1 Park, D. G;Martin, M. H. E;Ober, C. K;Burlitch, J. M;Cavin, O. B;Porter, W.D;Hubbard, C. R
  9. J. Non-Cryst. Solids v.149 Yeager, K. E;Burlitch, J. M
  10. Chem. Mater v.5 Yeager, K. E;Burlitch, J. M;Loehr, T. M
  11. How to Use Ace No-Air Glassware Bulletin 3840 Burlitch, J. M
  12. Inorg. Chem v.5 Charles, N. C;Smith, H. M;Watenpaugh, K
  13. J. Crystal Growth v.57 Hosoya, S;Takei, H
  14. J. Crystal Growth v.148 Higuchi, M;Geray, R. F;Dieckmann, R;Park, d. G;Burlitch, J. M;Barber, D. B;Pollock, C. R
  15. Comprehensive Inorganic Chemistry Clark, R. J. H;Bailar, J. C(ed.);Emeleus, H. J(ed.);Nyholm, R(ed.);Trotman-Dickenson, A. E(ed.)
  16. J. Chem. phys v.41 Ortolano, T. R;Selbin, J;mcGlym, S. P
  17. J. Chem. Phys v.35 Dodge, R. P;Templeton, D. H;Zalkin, A
  18. Mater. Res. Soc. Symp. proc v.121 Better Ceramics Through Chemistry III Sanchez, C;Nabavi, M;Taulelle, F
  19. J. Chem. Mater v.3 Livage
  20. J. Chemical Reviews v.65 Selbin
  21. J. Inorg. Nucl. Chem v.42 Lemerle, J;Nejem, L;Lefebvre, J
  22. Talanta v.10 Dean, G. A;Herringshaw, J. F
  23. J. Am. Chem. Soc. v.34 Cain J. R;Hostetter, J. C
  24. Chemistry of Elements Greenwood, N. N;Earnshaw, A
  25. Inorg. Chem v.21 Gharbi, N;Sanchez, C;Livage, J;Lemerle, J;Nejem, N;Lefebvre, J
  26. Inorg. Chem v.1 Ballhausen, C. J;Gray, H. B
  27. Phys. Rev v.119 Gerritsen, H. J;Lewis, H. R
  28. Phys. Lett v.7 Kasai, P. H
  29. Ber. Dtsch. Keram. Ges v.49 Borchardt, V. G;Schmalzried, H
  30. J. Non-Cryst. Solids v.82 Orgaz, F;Rawson, H
  31. J. Am. Ceram. Soc v.66 Brinker, C. J;Haaland, D. M
  32. J. Phys. Chem. Solids v.51 Nabavi, M;Taulelle, F;Sanchez, C;Verdaguer, M
  33. Advanced Inorganic Chemistry(5th Ed.) Cotton, F. A;Wilkinson G
  34. Inorg. Chem v.30 Feher, F. J;Walzer, J. F
  35. Vanadium; in Comperhensive Inorganic Chemistry Clark, R. J. H
  36. Am. Miner v.53 Birle, J. D;Gibbs, G. V;Moore, P. B;Smith, . V