쌍곡선형 모델에 의한 반사파 성분 분해

Decomposition of Reflecting Waves by Hyperbolic Model

  • 발행 : 1998.12.01

초록

천수방정식 형태의 쌍곡선형 완경사 방정식을 이용하여 파랑의 반사파 성분을 분해하는 방법을 제시한다. 모델의 반사파 산정능력을 평가하기 위하여 Booij 경사면 및 물결사주에 적용한다. Chamberlain and Porter(1995)에 의하여 주어진 수심경사제곱항과 수심곡률항의 효과를 포함하였을 때 Berkhoff의 완경사 방정식에 의한 결과보다 유한요소법 결과나 실험 자료와 비교하여 훨씬 만족할 만한 결과를 보여주었다.

An approach of decomposing the reflecting components is proposed by using the mild-slope equation of hyperbolic type which has the similar form to the shallow water equations. The approach is verified on Booij's problem and sinusoidally varying ripples. Inclusion of higher-order bottom effect given by chamberlain and Porter(1995) yields even more satisfactory results than the Berkhoff's mild-slope equation when compared with finite element solution or experiments.

키워드

참고문헌

  1. 한국해안 · 해양공학회지 v.6 no.3 비선형 불규칙 완경사 파랑 모델의 유도 이정렬
  2. 대한토목학회논문집 v.17 no.Ⅱ-2 수심변화가 심한 경우에 적용가능한 Copeland형 파랑식 이창훈;박우선
  3. 대한토목학회논문집 v.15 no.6 시간 의존 완경사 방정식의 파군거동 이창훈;편종근
  4. 한국해안 · 해양공학회지 v.4 no.1 복합요소법을 이용한 항내 파랑 응답 수치해석 정원무;편종근;정신택;정경태
  5. Proc.13th Coastal Engrg. Conf., ASCE Computation of combined refraction-diffraction Berkhoff, J. C. W.
  6. Coastal Engrg. v.7 A note on the accuracy of the mild-slope equation Booij, N.
  7. J. Fluid Mech. v.291 The modified mild-slope equation Chamberlain, P. G.;Porter, D.
  8. Proc. 4th Int. Conf. on Applied Numerical Modeling Hybrid element modeling of harbor resonance Chen, H. S.
  9. Coastal Engrg. v.9 A practical alternative to the mild slope wave equation Copeland, G. J. M.
  10. J. Fluid Mech. v.144 Surface-wave propagation over sinusoidally varying topography Davies, A. G.;Heathershaw. A. D.
  11. J. Fluid Mech. v.162 A general wave equation for waves over rippled beds Kirby, J. T.
  12. Proc. 23rd Coastal Engrg. Conf., ASCE Time-dependent mild slope equation for random waves Kubo, Y.;Kotake, Y.;Isobe, M.;Watanabe, A.
  13. J. Fluid Mech. v.45 Wave-induced oscillations in harbors of arbitrary geometry Lee, J. J.
  14. Coastal Engrg. v.11 An effcient finite-difference approach to the mild-slope equation Madsen, P. A.;Larsen, J.
  15. Coastal Engrg. v.19 Extended refraction-diffraction equation for surface waves Massel, S. R.
  16. J. Fluid Mech. v.300 Extensions of the mild-slope equation Poter, D.;Staziker, D. J.
  17. Proc. Roy. Soc. of London, A v.453 A fully dispersive weakly nonlinear model for water waves Nadaoka, K.;Beji, S.;Nakagawa, Y.
  18. J. Fluid Mech. v.95 On the parabolic equation for water-wave propagation Radder, A. C.
  19. J. Fluid Mech. v.72 Scattering of surface waves by a conical island Smith, R.;Sprinks, T.
  20. Coastal Engrg. v.32 Time-dependent equations for wave propagation on rapidly varying topography Suh, K. D.;Lee, C.;Park, W. S.
  21. J. Korean Soc. of Coastal and Ocean Engrs. v.10 no.2 A note on the modified mild-slope equation Suh, K. D.;Park, W. S.;Lee, C.
  22. Coastal Engrg. in Japan v.29 Numerical modeling of nearshore wave field under combined refraction, diffraction, and breaking Watanabe, A.;Maruyama, M.