References
- Lectures from Markov processes to Brownian motion K.L. Chung
- Pacific J. Math. v.21 Sample function behavior of increasing processes with stationary, independent increments B.E. Fristedt
- A. Wahrsch. Verw. Gebiete v.18 Lower functions for increasing random walks and subordinators B.E. Fristedt;W.E. Pruitt
- Lecture Notes in Mathematics(springer) v.784 Transience and recyrrence of Markov processes R.K. Getoor
- Limit distructions for sums of independent random variables(2nd ed.) B.V. Gnedenko;A.N. Kolmogorov
-
Theorie de l'addition des variables aleatoires(
$2^e$ ed.) P. Levy - Kodai Math. J. v.13 Recurrence and transience of Gaussian difffusion processes J.J. Liou
- Semi-selfdecomposable distributions and a new class of limit theorems M. Maejima;Y. Naito
- Semi-selfsimilar processes M. Maejima;K. Sato
- Remarks on semi-seldsimilar processes M. Maejima;K. Sato;T. Watamabe
- J. Multivar. Anal. v.10 Class L of multivariate distribution and its subclasses K. Sato
- Kahou katei(additive processes) K. Sato
- Distributions of class L and self-similar processes with independent increments K. Sato;T. Hida(et al.)(ed.)
- Prob. Th. Rel. Fields v.89 Self-similar processes with independent increments K. Sato
- Time evolution of Levy processes K. Sato;N. Kono(ed.);N.R. Shieh(ed.)
- Proc. Amer. Math. Soc. v.49 The supports of infinitely divisible distribution functions H.G. Tucker
- Prob. Th. Rel. Fields v.104 Sample function behavior of increasing processes of class L T. Watanabe
- Transience conditions for self-similar additive processes K. Yamamuro