J. Korean Math. Soc. 35 (1998), No. 1, pp. 207-224

ON SELFSIMILAR AND SEMI-SELFSIMILAR
PROCESSES WITH INDEPENDENT INCREMENTS

KEN-1TT SATO AND KOUJI YAMAMURO

ABSTRACT. After the review of known results on the connections be-
tween selfsimilar processes with independent increments (processes
of class L) and selfdecomposable distributions and between semi-
selfsimilar processes with independent increments and semi-selfdecom-
posable distributions, dichotomy of those process2s into transient
and recurrent is discussed. Due to the lack of statinnarity of the in-
crements, transience and recurrence are not expressed by finiteness
and infiniteness of mean sojourn times on bounded sets. Compari-
son in transience-recurrence of the Lévy process and the process of
class L associated with a commuon distribution of class 1. is made.

1. Introduction and definitions

A stochastic process {X;: t € [0,20)} on the d-dimensional Euclidean
space R? is called selfsimilar, if, for every a > 0, there is b > 0 such that

(1.1) {Xu:t€[0,00)} L {bX,: t€[0,00)}.

By (1.1) we mean that, for everv choice of a finite number of times
0 <t <ty < - < by, (Xatyy -, Xap,) and (bXy,,...,bX,, ) have a
common distribution. We call a process {X;: t € [0,00)} on R? semi-
selfsimalar, if, for some a € (0,1) U (1, 00), there is b > 0 satisfying (1.1).
The notion is introduced in [9]. Any a > 1 satistying (1.1) with some
b > 0 is called an epoch of the semi-selfsimilar process { X;}. We denote
by I' the set of all @ > 0 such that there is b > 0 satisfying (1.1).

Received QOctober 24, 1997.

1991 Mathematics Subject Classification: 60G18, 60J3C.

Key words and phrases: selfsimilar semi-selfsimilar, selfdecomposable, semi-
selfdecomposable, independent increments, Lévy process, additive process, process
of class L, transience, recurrence.

This work is based on the invited talk given at the annual meeting of the Korean
Mathematical Society.



208 Ken-iti Sato and Kouji Yamamuro

A stochastic process {X;: t € [0,0)} on R? is called a Lévy process, if
it has stationary independent increments, it is stochastically continuous
and starts at the origin, and its sample functions are, almost surely,
right-continuous with left limits. If the stationarity of the increments is
not assumed, we call it an additive process.

A stochastic process {X;:t € [0,00)} with P[X. = 0] = 1 for every
t > 0 is called a zero process. Otherwise it is called non-zero.

Let {X;:t € [0,00)} be an additive process on E?. We say that it is
transient if
(1.2) Pllim | X,| = oc] = 1,

t—00
where || is the Euclidean norm of r € R For s > 0 we say that it is
s-recuyrrent if

(1.3) P[liglinf X, X =0 =1.

The s-recurrence means that, starting at time s, the process returns to
any neighborhood of the starting point after arbitrarily long time with
probability 1. We say that the process is recurrent if it is s-recurrent for
every s > (. Since the stationarity of the increments is not assumed, the
O-recurrence does not always imply the recurrence A trivial example
of an additive process which is O-recurrent but nct recurrent is given
by {X;} such that P[X, = f(t)] = 1, using an appropriate nonrandom
continuous function f(¢) with f(0} = 0 (private communication with
Minoru Motoo).

The distribution (law) of a random variable X on R? is denoted by
L(X). The characteristic function of a probability measure ;2 on R? is
denoted by ji(z), that is, fi(z) = [p. €% pu(dz), z € R?, where (2, 1) is
the Euclidean inner product of z, z ¢ R?. The suppo-t of X is denoted by
Sx or Sgex), that is, Sy is the smallest closed set F with P[X € F] = 1.

A probability measure p on R is called selfdecomnposable, or of class
L, if there are sequences of independent R%-valued random variables Z,,,
positive real numbers a,, and vectors ¢, € R% n = 1,2,..., such that
maxi<;<, Pla,|Z;| > ¢] — 0 for every £ > 0 and L(a, Z;’L;x Zi+c,) — p
(weak convergence), as n — oo. It is well-known (see [5, 11]) that yu is
selfdecomposable if and only if, for every b € (0, 1), there is a probability
measure p on R® such that

(1.4) fi(z) = f(bz)p! 2) for z € R
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If 4 is selfdecomposable, then the p in (1.4) is un quely determined by
¢ and b, and both i and p are infinitely divisible.

Maejima and Naito [8] extends the notion in the following way. Fix
b € (0,1). A probability measure p on R? is said to be of class L(b)
if there exist sequences of independent R%-valued random variables Z,,,
a, >0, ¢, € RY, and positive integers k,, n = 1, 2, .., such that a, | 0,
kn T 00, an./an — b, max, <<, Fla,|Z;| > €] — 0 for every £ > 0 and

L{a, Z Z;+¢,) — i, as n — oc. A probability measure g on R? is of
class L(b) 1f and only if there is an infinitely divisibl: distribution p on RY
that satisfies (1.4). If u is of class L(b), then p is infinitely divisible and
the p in (1.4) is uniquely determined by g and b. A probability measure
poon RY is said to be semi-selfdecomposable if, for some b € (0,1), p is
of class L(b). Sometimes we say that u is semi-sclfdecomposable with
span ¢ in the same meaning as p is of class L(c™!)

In this paper we shall first formulate known -esults on the corre-
spondence between selfsimilar additive processes «nd selfdecomposable
distributions and between semi-selfsimilar additive processes and semi-
selfdecomposable distributions. Then, in Section 3, we give dichotomy
results for semi-selfsimilar additive processes into transient and recur-
rent. It is remarked in Section 4 that, unlike time-homogeneous Markov
processes, transience and recurrence are not related to finiteness and
infiniteness of mean sojourn times on bounded sets. In the final sec-
tion we shall make comparison in transience and recurrence of the Lévy
process and the selfsimilar additive process associited with a common
selfdecomposable distribution.

2. Known results

The class of selfsimilar additive processes and the class of selfdecom-
posable distributions are in one-to-one correspondence, as shown in 113,
14]. The correspondence is preserved in a weaker form in the relation be-
tween the classes of semi-selfsimilar processes and semi-selfdecomposable
distributions, which is given in {9] We begin with the existence of ex-
ponents.

THEOREM 2.1. Suppose that {X,: t € [0,00)} is a non-zero semi-
selfsimilar process on R?, stochastically continuous at t = 0. Then, b in
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(1.1) is uniquely determined by a € T, and there is 1 unique H € R such
that b= al foralla e T.

The H is necessarily positive and called the exponent of {X,}. As
selfsimilarity is a stronger property than semi-selfsimilarity, any non-zero
selfsimilar process stochastically continuous at ¢ = ( has its exponent H.
Theorem 2.1 is proved in [9, 10] under a slightly different assumption that
{X:} is a non-trivial, wide-sense semi-selfsimilar process stochastically
continuous at ¢ = (. But the proof works as well.

The correspondence between selfsimilar additive processes and self-
decomposable distributions is as follows.

THEOREM 2.2. (i) If {X,} is a selfsimilar additive process on R¢,
then, for every t > 0, £(X,) is selfdecomposable.

(ii) Let y be a selfdecomposable distribution on R and let H > 0.
Suppose that p is not a delta measure. Then there exists, uniquely in
law, a non-zero selfsimilar additive process {X;} ¢n R? with exponent
H and with L(X) = p.

Proof of (i) is simple. Namely, if {X,} is selfsimilar additive with
exponent H, then, for any b € (0,1) and ¢ > 0, choose s < t so that
(s/t)" = b and see that

ﬁt(z) == ﬁs(z)ﬁs.t{z) = ﬁt(bz)ﬁs,t<':)s

of Kolmogorov’s extension theorem. See [13, 14]. The uniqueness in
law comes from 7ix(z) = fi;(#"2) and from the independent increments
property.

ProposITION 2.3. Let {X,} be a selfsimilar additive process on R¢
with exponent H. Define Y; = X, where v+ > 0. Then {Y,} is a
selfsimilar additive process with exponent vH.

Proof. Obviously {Y;} is an additive process. It is selfsimilar with
exponent vH, because

{Ya} = { X} = {”J’YHXﬁ} = {Gw Y}
This finishes the proof. .

We can consider {X;} and {Y;} in the proposition above as essen-
tially identical processes. They have a common distribution at ¢ = 1.
Thus Theorem 2.2 shows that selfsimilar additive processes on R? and
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selfdecomposable distributions on R¢ are essentially in one-to-one corre-
spondence. As selfdecomposable distributions are called of class L, we
call selfsimilar additive processes processes of cluss L. Note that the
structure of selfdecomposable distributions, namely the form of their
Lévy measures, is known. See [5, 6, 11].

An extension of Theorem 2.2 to semi-selfsimilar additive processes is
as follows.

THEOREM 2.4. (i) Suppose that {X,} is a nor-zero semi-selfsimilar
additive process on R%. Let H be its exponent and a be an epoch of
it. Then, for every t > 0, L£(X,) is semi-selfdecomposable with span a¥
that is, of class L{(a™).

(ii) Let 0 < b < 1 and H > 0. Let u be semi-se.fdecomposable on R?
with span b™', and suppose that it is not a delta measure. Then there
exists a non-zero semi-selfsimilar additive process on R¢ with exponent
H and epoch b™'"" such that L(X ) = p.

To see (i), note that p,, = L(X\; — X,) is infin tely divisible for any
0 < s <t and that i, = £(X,) satisfies

Bi(2) = far(a2) = (e Ay ar(a™2) for z € R

Proof of (ii) depends on the existeice of an appropriate system {y,: 1 <
t < a} of probability measures m Theorem 2.5. Unlike the case of
selfsimilar additive processes, the semi-selfsimilar additive process {X,}
in the assertion (ii) is not unique in law.

THEOREM 2.5. Let a > 1 and H > 0. Let {4: 1 <t < a} be a
system of probability measures on R? such that

1. py 1s not a delta measure,

2. y(z) #0for1 <t<aand: R

3. for any s, t with 1 < s <t < a, there is a probability measure j,,

satisfying j1;(z) = fi.(2) s (21 for z € RY,

4. p is weakly continuous in t « [1,al,

5. fia(2) = fy(a" z) for z € R™.
Then y,, 1 <t < a, are semi-selfdecomposable with span o and there
exists, uniquely in law. a semi-selfsimilar additive process {X,} on R?
with exponent H and span a such that L(X,) = u, for 1 <t < q.

This is a special case of a more general theorern in (9], where wide-
sense senii-selfsimilar additive processes are treatedl.
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REMARK 2.6. As is well-known, the class of Lévy processes {X;} on
R is in one-to-one correspondence with the class of infinitely divisible
distributions y on R¢ through the relation that £(X;) = u. A Lévy
process {X;} on R is selfsimilar if and only if p is strictly stable. The
index a (0 < « < 2) of stability and the exponent H satisfy aH = 1.
Thus, if p is selfdecomposable but not strictly stable, then it induces
two different processes — one is a Lévy process and another is a process
of class L (more rigorously the latter is an equivalence class of pro-
cesses of class I with the equivalence relation defined by time change
described in Proposition 2.3). The problem of comparison of these two
processes is proposed in [13, 14]. Some results are given there. Path
behaviors of increasing processes of class L on R are deeply investigated
by Watanabe {17], showing clear differences with those of subordinators
(i.e. increasing Lévy processes) studied by Fristedt 2] and Fristedt and
Pruitt [3]. (Increase and decrease in this paper are in the wide sense
allowing flatness.)

REMARK 2.7. A Lévy process {X;} on R? is semi-selfsimilar if and
only if the corresponding infinitely divisible distribution g is strictly
semi-stable. Any non-trivial semi-stable distribution has its index o €
(0,2]. Again this o and the exponent H of semi-selfsimilarity are in the
relation aH = 1. See [15] for review on semi-stable processes.

3. Dichotomy of semi-selfsimilar additive processes

We prove the following three results.

THEOREM 3.1. Let {X,} be a semi-selfsimilar additive process on R.
Suppose that it is not transient. Then it is O-recurrent and, moreover,
s-recurrent for any s satisfying 0 € Sx_.

THEOREM 3.2. If {X,} is a selfsimilar additive srocess on R, then
it is either transient or recurrent.

THEOREM 3.3. If {X,} is a semi-selfsimilar additive process on the
line R, then it is either transient or recurrent.

We do not have the proof of the dichotomy into transient and recur-
rent for semi-selfsimilar additive processes on R¢ with d > 2.
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REMARK 3.4. Lévy processes on R? are transient or recurrent. How-
ever, there are additive processes which are neither transient nor 0-
recurrent. For example, let {X;} be a non-zero Lévy process and let

a(t) be a strictly increasing continuous function such that a(0) = 0 and
a(oo) < co. Define Y; = X ). Then Y; tends to X,(o0). as t — oo, and
{Y}} is neither transient nor 0 -recurrent.

REMARK 3.5. A criterion of Spitzer type tells us that, for any fixed
e > 0, a Lévy process {X;} on RY with £(X,) = u is transient or
recurrent according as

1
/ Re ( , ) dz < oo or = 00,
|z]<e _"r’{)(")

respectively, where (2) is the continuous function satisfying e**) = fi(z)
and ¢(0) = 0. See [15] for references. It is an interesting problem to find
a criterion of transience and recurrence for selfsimilar additive processes
in terms of the properties of the vorresponding selfdecomposable distri-
butions. Notice that transience and recurrence are invariant under the
time change described in Proposition 2.3. One of the authors tackles this
problem and obtains several sufficient conditions for transience in [18].
One of the results is that, if d > 3, then any non-degenerate selfsimilar
additive process on R? is transiert.

Let us prove Theorems 3.1-—3 3.

Proof of Theorem 3.1. The zero process is obviously recurrent. So
we assume that {X,} is non-zero. Then {X,} has an exponent H by
Theorem 2.1. Let us prove the O-recurrence. First we claim that

(3.1) Pi}iﬂ | X¢| =o00| =P %n(let] > 0] for any ¢ > 0.
In fact, the semi-selfsimilarity shows that, for anv ¢ > 0and e € T,
P[|X¢| > € for every t > ac] = P{|Xy| > e for every t > ¢
= Pl{X,| > a "z for every t > ¢],
which tends to P[infs..|X;| > 0 as a goes to oo in ['. Note that T is
an unbounded set, since a € I" implies ¢™ € T for all n € Z. Therefore
P[|X;| > € for all large t] = P[ltn(fl X,| > 0].

Since € is arbitrary, this shows (:3.1). By the ass imption that the pro-
cess is not transient, the probability that lim, .. |X;| = oo is less than
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one. Notice that the event lim, ., |X;| = oo is, for every s, writ-
ten as limy o |X; — X,| = 0o, which is measurable with respect to
{X:— X,: t € [s,00)}. Hence, by Kolmogorov’s 0-1 law, its probability
is zero. Namely, by (3.1),

Plinf|X;; = 0] = 1.

Since ¢ is arbitrary, this shows that P[liminf, .o | X,/ = 0] = 1. That
is, the process is O-recurrent.
Next, let us prove the s-recurrence for any s > 0 such that 0 is in S X,»

the support of X,. Suppose, on the contrary, {X,} is not s-recurrent.
Then,

P[li{n inf [ X, - X,|>0]>0
and, hence, there are ¢ > s, € > 0, and k£ > 0 such that

P[itl\lf | X — X5 > 2¢] > k.

Let a € ' (1,00). Using the independence of the increments and the
semi-selfsimilarity, we have

P[ti\nf‘ 1 X: — X,| > a’e]

B / Plinf | X, — X, 4 z| > a"e]P[X,. — X, € dx]
Rd

t>ac

> / Plinf [X, — Xuo| > a] + a™e]P[ X,y — X, € da]
Rd

t>ac

/ Plinf | X, — X,| > a”"|z| + €] P[X,, — X, € da]
Rd

t>c

Z Plinf | X, — X,| > 2¢] P[| Xo5 — X,| < a'le]
[ >C

> kP[| X — X,| < ale

= kP[| X, — Xs/a| < g

Let
A = limsup P[tinf 1 X — X,| > aH¢t].
>ac

I'sa—o0

Then, the estimate above shows that

A > kP[|X,| <e] >0,
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by the assumption that 0 € Sy,. On the other haad,
A < P[limsup{w: inf |1 X; — X,| > a’e})
Ba—o0 ¢

<P[ lim inf|X; — X,| = o0

['2a—o00 t>rac

*P[ lim inf [.Y,] = oo

'sa—oo t/a(

By Kolmogorov’s 0-1 law it follows that P[lim,_.,|X;| = oo] = 1, that
is, {X;} is transient, in contradiction to the assumption. This proves
s-recurrence. J

Proof of Theorem 3.2. Let {X;} be a selfsimilar additive process on R%.
Let p = L£(X,). The zero process is recurrent. So we assume that { X}
is non-zero with exponent H. If € S, then, 0 € Sy, for any s > 0,
since
Pl X, <e]l=P]|X |<s e >0fore>0

by virtue of I' = (0, 0c0). Therefor, in case 0 € S, the process is either
transient or recurrent by Theorem 3.1. If 0 ¢ S, then {X,} is transient,
because there is € > 0 such that P’[|X,| > €] = 1, and hence

P[’JYti > tHE] — PHX]' 2 5] o= 1
again by virtue of ' = (0, 0o). O

Proof of Theorem 3.3. Here we consider a semi-selfsimilar additive pro-
cess {X;} on the line. We assume that {X,} is non-zero with exponent
H. Let p, = L£(X,). Then

fir(z) = exp | ~3A2° + iz + /( 1 —dzel (@) u(de)
R

with A, > 0, 3, € R, {0} = 0, and [(1 A |z]*)is(dx) < co. We have
A, < A, and v, <y, for s < t. Moreover, if a € I", then A, = a*” A, and
Va = Tyuvy, where, in general, we define (T.4)(B) = v (¢! B) for any
Borel set B. We use the results of Tucker [16] (sce [12] for exposition)
on supports of infinitely divisible distributions on the line. We use also
the fact that @ € I' implies a” ¢ I for all n € Z. We say that v, is
one-sided if 14(0, 0c) = 0 or v(—co,0) = 0. We say that v, is two-sided
if 14(0, 00) > 0 and v, (—00,0) > 0

If Ay >0, then A, > 0 for an- ¢ > 0. If f || (dr) = oo, then

flx?sl

(dx) = oo for any ¢ > 0. If v} is two—mde:l then 1, is two-sided
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for any ¢ > 0. Notice that 0 € S,, if v, # 0. Thus, in these three cases,
Sy, = R for any ¢ > 0 by Tucker’s result, which 'mplies, by Theorem
3.1, that {X,} is either transient or recurrent.

Consider the remaining case, that is, 4; = 0, ->(1w|<1 || (dz) < oo,
vy # 0, and v, is one-sided. Note that these are true also for 4, and v,
with £ > 0. Assume that v,(0,00) > 0 and v;(~>,0) = 0. The other
case is treated similarly. Now

fi(z) = exp V (¢ = Duy(da) + 10z
JO

with some 7 € R. We have 7), = a*+) for a € I'. Suppose that {X,}

is not transient. Then it is O-recurrent by Theorem 3.1. Given s > 0,

let us show that {X,;} is s-recurrent. We consider two cases: v < 0 and
0 -

Ys 2 0.

Case 1. 7Y < 0. Let a € 'N(1,00). Let N be the set of positive

s

integers. We have

[s'¢}
1> P[Xury <0, Xgrs, > 0 for Vk € N|

nol

>3 P Xers <0< Xyrrg, Xpokory — Xgnorg > 0 for vk € N|

no 1
6]

> P[Xus <0< Xyt Pl Xpuiorg = Xpray > 0 for ¥k € NJ.

n= 1

Hence, using the semi-selfsimilarity, we have

oc
=

(3.2) 1> PlX; <0< X, Pl Xp,— X, >0forVk € Nj.
n==l

Notice that

13 PIX, <0< X,,] > P <X, <0, Xoy > X, 47

( . ) :P[7?§X5<O}P[XG>MX5>_79]7

and that P[y? < X, < 0] > 0, since Tucker’s result says that Sy =

1S

WY 00) by 0 € S,. We have T,nv, - v,, > v, that is,

(3.4) vila Hey, (1,“'”(:2_] > v(cy, ] for any interval (¢, cql.
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Moreover T,uv, # v,. In fact, it Tyny, = v, then the equality holds
in (3.4), and hence v,(a™¥,a™ V] = v,(1,a"] for every n € Z, which,
combined with v,(1, 00) < oo, implies v, = 0, contrary to our assump-
tion. Since X, — X, is infinitely divisible with Lévy measure T,iv, — v,
SX,.~x, 1s unbounded above. Hence P{X,, — X, > =% > 0. Thus it
follows from (3.3) that P[X, < 0 < X,,] > 0. Therefore, by (3.2),

(3.5) PiXy,— X, >0 for ¥k € N] = 0.

Similarly to (3.2), we have

g

2),
(3.6) 12) PIX,>0> X, P Xp, — X, 20 for Yk € N|
e |

Let n > 0. Then
PX,>0>X,]>Pln: X, >0, Xo < X, ~ 7]
=Pln> X, > 0] P[Xys — X, < —1].
Since the infimum of Sx,,_x, is (a” — 1)7?, we have
PiXes— X< =] >0

for any sufficiently small 7. On the other hand, Pln > X; > 0] > 0
for any 5 > 0, since Sy, = [4?,00). Therefore F[X, > 0 > X,,] > 0.
Consequently,

(3.7) P[X,, — X, < 0 for Vk € N| = 0.
It follows from (3.5) and (3.7) that
PlXu, < X, for some k € N| = 1,
P[Xu, > X, for some k € N| = 1.
Since a € I" can be chosen arbitrarily large, we see that
(3.8) P31, 100 in (s,00) such that X, > X, > X,, ] = 1.

Since the sample functions of {X;} do not have downward jumps, it
follows that

(3.9) P| 31, 1 0o in (s,00) such that X, = X,| = 1.

Hence {X,} is s-recurrent.

Case 2. v > 0. We claim that, for any a € I'11 (1, 00)
(3.10) P[llm XH”S = m} s 1

N

k]
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Note that P[X, > 0] = 1, since Sx, = [7?,00) and v, has infinite total
mass. If (3.10) is proved, then, combining it with the O-recurrence, we
obtain (3.8) again, from which (3.9) follows. The proof of (3.10) is as
follows. We have

Xans = X+ 2:(Xaks - Xak'ls)
k=1

and Xgng — Xyn1g has Lévy measure Tunvy — T oo vg and drift (a7 —
a™DH)y0 > 0. Thus, X, is increasing in n. Suppose that (3.10) is not
true. Then, by Kolmogorov’s 0-1 law,

Pllim Xy, < o0] = 1.

Hence

P[ llm (Xa"s — 7 an~15) = 0} = 1
Thus L(Xgns — Xgn15) — 8y, the unit mass at 0. It follows that
(3.11) (Tynivs — Tynvmvs)(e,00) — 0 as n — >0 for Ve > 0

by Section 19 of [5]. But
(T vs — Tynvmvs)(1,00) = Vs(a""H, a'“(”“l)H]
and, by (3.4),
ve(a@ W DH gmm] > ) (@ gm0 for wn € 7.
Since vy # 0, there is some n € 7% such that z/s(u,‘"H,a‘(”'_l)H] > 0.
Hence (3.11) is not true for ¢ = 1. This is absurd. Hence (3.10) must be
true. a

4. Transience and recurrence and mean sojourn times on
bounded sets

A Lévy process {X;: t € [0,00)} on R? is transient if and only if

EUOOO1K(>Q)dt} < 00

for every compact set K. On the other hand, a Livy process {X,} is
recurrent if and only if

E UOOO 1D(.Xt)dt} = o0
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for every open set D containing 0. Similar expression of transience and
recurrence by sojourn times persists in a wide class of time-homogeneous
Markov processes, although not in all irreducitle time-homogeneous
Markov processes, as Uchiyama’s example in {7} shows. See Getoor [4]
and Chung [1] for other equivalent conditions.

It should be kept in mind that the connection of transience and re-
currence with finiteness and infiniteness of mean sojourn times does not
exist in time-inhomogeneous Markov processes. It does not exist even
in selfsimilar additive processes, as Proposition 4.1 below indicates.

It is well-known that a strictly stable process {Xt(a)} on RY of index «
(0 < a < 2) is transient or recurrent according as «x < dV1or a > dV1,
respectively. Strictly stable processes are selfsimilar Lévy processes (see
Remark 2.6). Thus any selfsimilar additive process {Y;} obtained from
{Xt(a)} through time change described in Proposition 2.3 is transient
or recurrent according as « < d*/ 1 or &« > d VvV L. But finiteness and
infiniteness of mean sojourn times on bounded sets for {Y;} depend on
the time change function. The following proposition shows it in the
symmetric one-dimensional case.

PROPOSITION 4.1. Let {X{®} be a non-zero symmetric stable pro-
cess on R of index « and let {Y,} be a selfsimila- additive process ob-

tained from {,Xt(“)} by time change, Y; = X% with v > 0. Ify > a,
then

(4.1) E [/ 1k(Y, — Ys)dt} < oo for every compact set K.

If v < «, then

(4.2) E [/ 1p(Y; — Ys)dt] = oo for every open set D containing 0.

Proof. Let

) = 5 (1 - g) 1 (©)

with b > 0. The assertion (4.1) is equivalent to

E [/ f(Y: — Yo.)de < oo for everv b > 0,
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while (4.2) is equivalent to

[/ fo(Ys dtjnooforeveryb>0

The Fourier transform fb(z) of fy(s) is
00 . B
folz) = / €% £, 2)dar — (sm bz) .

- bz

o0

We write f, = f, suppressing the subscript. We have

E [/m FY, - Ys)dt] . /“ E[f(X - x9Nt

Elexp(izX\®) = exp(—tc|z|®)
with some ¢ > 0, we get

Blf(x$ - X)) = E[f(Xf“.),sw)]

/ flz dm/ emiEremelt =% gy
. ¢}
/ j Z)t ~c(t7—s7)z

We denote by Cy, Cy, ... positive constants. By change of variables,

S O .

= ](«Z)Zvua/w'dzf ¢ *t(t + cs'yz")%"']dt
0

Since

Consider two cases: v > 1 and v < 1.
Case 1. y > 1. If @/y < 1, then

I< CgF(l/ﬂ/ f(z)z‘“/"*dz < %.
0

Suppose «/y > 1. Then
[ord] 1
I>0C f(z)z‘“”:lz/ (t+ cs7 2 37 1q
0 0

0
>y flz)z72i1 + CS’YZH)%Y_IdZ = 00.
0
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Case 2. v < 1. If a/v > 1, ther
I> C'gF(l/v)/ ]/"\(z)z*"/”dz = 00.
0

Suppose o/ < 1. If s = 0, then it is easy to see that I < oo. Suppose
that s > 0. Partition the domain of integration in I with respect to z
into (0, 1] and (1,0c). We have

oG
f(z)z=o 4/ et sz “)1 Ldt
0

1 00
= / f(z,zﬂ’hdz/ e it + cs")}’r‘ldt
0 0
< X0

/ J?(z)z““/"d / et (t (‘s”"za)é‘ldt

1

= / / e (t(es?z ) 1)%‘]dt
0

<C “’/ e (t(es”) T+ 1) Ndt

0

and

\) \)

< X0
Thus, in both cases, we have proved that I is firite or infinite accord-
ing as o/ < 1 or a/y > 1, respectively. O

5. Comparison of Lévy process and process of class L asso-
ciated with a common selfdecomposable distribution

Let p be a selfdecomposable distribution on RY. Let {X,} be the
unique (in law) Lévy process such that £(X;) = u, and let {Y,(‘H)}
be the unique (in law) process of class L with exponent H such that

E(YI(H)) = . Unless g is strictly stable, they are different processes (see
Remark 2.6). Can we say anything about transience or recurrence of

{ Yt(H)} from that of {X,}? The answer is negative, as we show below.
PROPOSITION 5.1. Let pu be a Faussian distribution on R with non-

zero mean. Let {X,} and {Y' “5 be the processes associated with p
described above. Then {X,} is transient, but {Y;" '} is recurrent.
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Proof. The Lévy process {X,} is transient. This is a consequence of
the strong law of large numbers for {X,}, because it has non-zero mean.

For different H and H’, the processes {Yt(H) } and {)/;(H/)} are trans-
formed to each other by nonrandom time change described in Proposi-
tion 2.3. Hence they are transient or recurrent simultaneously. Let us
show recurrence of {¥;"/?}. We have

c2? bive

() = o
with ¢ > 0 and v # 0. Let {B,} be the Brownian motion on R. Define
Y, = By, + t'%y.

Clearly {Y;} is an additive process. Since
Elexp(izY;)] = exp(—tcz? + it1/%.),
we have
Elexp(izYy,)| = Elexp(iza'/?Y,)] for anv a > 0.
It follows that {Y} is self-similar with exponent 1/2. Since L(Y}) = g,

we have {V,} £ {¥;P}. The law of the iterated logarithm says that,
almost surely,

. B, o B,

1 5 Ty T T, 1 ,1 1 f‘-———~—( P
”flillp (2t loglog t)1/2 iy (2t log log t)1/?

Hence Y;/(4ct loglogt)!/? has the upper limit and the lower limit equal
to 1 and —1, respectively, as t — oo. Therefore, alinost surely, there is
a sequence t, = t,(w) 1 0o such that Y; (w) = 0, since Y;(w) is contin-

uous in ¢. Hence {thz)} is O-recurrent. This implies the recurrence by
Theorem 3.2. O

PROPOSITION 5.2. Let p be a selfdecomposable distribution on R
such that

: ~ R k(z) ,
(5.1) i(z) = exp {/ (¢7% 1)%(12? :

e x| ]
where k(z) is nonnegative, increasing on (—o0,0). and decreasing on
(0,00). Suppose that 0 < k(0—) < co, 0 < k(0+) < >, and fi)oo k(z)dr =
Jo" k(z)dr < oo. Then, the associated Lévy process {X:} is recurrent

and the associated process {Yt(m} of class L is transient.

Proof is based on the following fact, which is proved in [18].
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PROPOSITION 5.3. Let i be a selfdecomposable distribution with i( z)
of the form (5.1) with k(z) being nonnegative, increasing on (—o0,0),
and decreasing on (0, 00) and satisfying k(0—) < oo, k(0+) < oo, and
k(0—) + k(0+) > 0. Then the associated process {Yt(H)} of class L is
transient.

Proof of Proposition 5.2. The process {Yt(m} is transient by Proposi-
tion 5.3. On the other hand, the Lévy process {X; - has finite mean since
f(z[>1 k(x)dr < oc, and the mean is zero since the derivative of i(z) of
(5.1) vanishes at z = 0. Hence {X,} is recurrent (see [12]). O

General conditions for occurrence of such phenomena as in Proposi-
tions 5.1 and 5.2 are unknown to us.
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