Detection of Apple Defects Using Machine Vision

컴퓨터 시각에 의한 사과 결점 검출

  • 서상룡 (전남대학교 농과대학 농공학과) ;
  • 성제훈 (전남대학교 농과대학 농공학과)
  • Published : 1997.06.01

Abstract

This study was to develop a machine vision system to detect and to discriminate 5 kinds of apple surface defectbruise, decay. fleck, worm hole and scar. To detect the defects from an image of apple, thresholding technique was applied to images on various frames (R, G, B, H, S and I) of the color machine vision and an image of near infrared (NIR). To discriminate the detected region of defect, various features of the 5 kind defect regions were extracted from the 4 kinds of images selected above. The features were size of area, roundness, axes length ratio, mean and valiance of pixel values, standard deviation of real part of amplitude spectrum in frequency domain obtained by Fourier transform of pixel data and mean and standard deviation of power spectrum obtained by the same transform of pixel data. Routines to discriminate the defects from the features of image were developed and tested to prove their validity. The test resulted that I-frame and NIR images were the most desirable. Accuracies of the two images to discriminate the defects were noted as 76% and 77%, respectively.

Keywords