Abstract
In order to post process the vector-quantized images employing the theory of projections onto convex sets or the constrained minimization technique, the the projector onto QCS(quantization constraint set) as well as the filter that smoothes the lock boundaries should be investigated theoretically. The basic idea behind the projection onto QCS is to prevent the processed data from diverging from the original quantization region in order to reduce the blurring artifacts caused by a filtering operation. However, since the Voronoi regions in order to reduce the blurring artifacts caused by a filtering operation. However, since the Voronoi regions in the vector quantization are arbitrarilly shaped unless the vector quantization has a structural code book, the implementation of the projection onto QCS is very complicate. This paper mathematically analyzes the projection onto QCS from the viewpoit of minimizing the mean square error. Through the analysis, it has been revealed that the projection onto a subset of the QCS yields lower distortion than the projection onto QCS does. Searching for an optimal constraint set is not easy and the operation of the projector is complicate, since the shape of optimal constraint set is dependent on the statistical characteristics between the filtered and original images. Therefore, we proposed a hyper-cube as a constraint set that enables a simple projection. It sill be also shown that a proper filtering technique followed by the projection onto the hyper-cube can reduce the quantization distortion by theory and experiment.