Accelerated Sequential Procedure to Estimate the Mean of Unknown Distribution

  • Published : 1997.08.01

Abstract

Consider the accelerated sequential procedure of Hall(1983). Second order asymptotic expression of well behaved functions of the stopping variable. The results is demonstrated by working out several point and interval estimation problems.

Keywords

References

  1. Proc. Cambridge Phil. Soc. v.48 Large sample theory of sequential estimation Anscombe, F.J.
  2. J. Roy. Statist. Soc. v.B no.15 Sequential estimation Anscombe,F.J.
  3. Ann. Math. Statist. v.36 On the asymptotic theory of fixed width sequential confidence intervals for the mean Chow,Y.S.;Robbins, H.
  4. JASA v.78 A frequentistic approach to sequential estimation in the general linear model Finster, M.
  5. J. Roy. Statist. Soc. v.B no.45 Sequential estimation saving sampling operations Hall, P.
  6. Scand. J. Statisti. v.15 Remarks on the asymptotic theory of triple sampling estimation of the normal mean Hamdy, H.I.
  7. Statistica On accelerating sequential procedures for point estimation:the normal case Hamdy, H.I.;M.S. Son
  8. S. Afr. Statist. J. v.12 On finite and infinite confidence sequences Lonbard, F.;Swanepoel, J.W.H.
  9. Probability and Statistics-The Harald Cramer Volume Sequential estimation of the mean of a normal population Robbins, H.
  10. Ann. Math. Statist. v.39 On the cost of not knowing the variance when making a fixed-width confidence interval for the mean Simons, G.
  11. Commun. Statist. Theor. Meth. v.9 On accelerating sequential procedures for estimating exponential distributions Son, M.S.;Hamdy, H.I.
  12. Ann. Statist. v.5 Second order approximations for sequential point and interval estimation Woodroofe, M.