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Accelerated Sequential Procedure to Estimate
the Mean of Unknown Distribution

M. S. Son , H. 1. Hamdy V

Abstract

Consider the accelerated sequential procedure of Hall(1983). Second order asymptotic
expression of well behaved functions of the stopping variable. The results is
demonstrated by working out several point and interval estimation problems .

1. Introduction

Consider the problem of estimating some unknown parameter xR in the presence of a
nuisance parameter 6>( using sequential procedure due to Anscombe (1953), Robbins (1959)
and Chow and Robbins (1965) has greater efficiency. Yet, it is rather slow and can be costly
to perform, e.g., see Hall (1983) who proposed an accelerated sequential procedure to reduce,
by an arbitrary predetermined factor, the number of sampling operations needed to construct a
fixed width confidence interval for the mean of a normal population with unknown variance.
Hall (1983) obtained asymptotic expressions for the mean and variance of the stopping
variable .

An accelerated sequential procedure, which can be used for a wider class of populations , is
developed in the sequel along the lines of Hall (1983), and Hamdy and Son (1991), and Son
and Hamdy (1990). A second order asymptotic expression is then obtained for the expectation
of an arbitrary, but well behaved (see Assumptions 1 below ) , function A of the stopping
variable. Such an expression can be useful in both point and interval estimation situations as
illustrated in section 4. Further, as a by-product a similar expression is obtained for the
purely sequential procedure.

Our approach takes advantages of the fact that the optimal sample sizes arising in the most
sequential estimation problems have the following structure

n =2 g(0), (1.1

where, %” is the optimal sample size, A>(Q is known constant and 2>0 is a given function of
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the unknown nuisance parameter §. Obviously, n"—c as A —co. However, we make the
following assumptions.

Assumption 1. Let 2 be continuously differentiable function such that
Stlﬂ h””(n)=0(h”’(/{)) as m —oo

Assumption 2. Let g>0 be a continuously differentiable bijective function such that as
m ——00

Sup | LA (oo | pmg!

n>mi

Let fl; and 5:, be the usual estimators of u# and 6 respectively, based on a random
sample of fixed size n=2.

Assumption 3. There exists a sequence W, W, ... of positive i.id random variables each

having mean 6 and variance #* such that
E(W, %)< oo, where 9;=W,=%"—, and S,,=21W}_ n=2

Assumption 1 is made to facilitate the calculation of the order of the remainder terms in the
Taylor series expansions in sequel, while assumption 2 enables us to explicity define the
inverse function of g and evaluate the order of the remainder term in egn (7) in the
appendix. Assumption 3 is made following Woodroofe (1977). Nevertheless, it is shown in
section 4 that these assumptions hold
true in many applications.

Regarding notation, we use f',f",f' " to denote the first, the second , and the third
derivatives, respectively, of a given function f.

2. A Purely Sequential Procedure

Since %" depends on the unknown nuisance parameter 6§ , we resort to the following

purely sequential procedure to estimate »'.

Assume that an initial sample of size m=2 has been taken from the underlying
distribution. Then, we define the following stopping rule.

M= inf{n> m:n=>2 g(W,)} 2.1

Once M is determined, we proceed to estimate the unknown parameter g .
The main results concerning the one-by-one sequential procedure (2.1) is given in the
following Theorem 1 whose proof is based on the following lemma.
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Lemma 1. Let be defined by (2.1). Then, under Assumptions 2-3, we have

* 2
() E(M—n")?= f,—{id"e—} + o),

(i) EM— n"13= o(1)?,

N _ e (2 (dn"\* " 2v( dn ”
(i) ECH) = " = L { n,[ . } in tz{ N+ o(D)
Where, v is given by Woodroofe (1977), see also Finster (1983).

Theorem 1. Let M be defined by (2.1). Then, under Assumptions 1-3, we have
E{h(M)}= h(n")— k' (n") + o( K (A)),

where,

sl SR -S4 )

Both Lemma 1 and Theorem 1 are proved in the appendix.

Remark 1. In the above expression, { represents the cost of not knowing the nuisance
parameter 6 under the purely sequential set-up, see Simons (1968) for more details.

3. An Accelerated Sequential Procedure

Hall (1983) suggested accelerating purely sequential procedures by a predetermined factor
y (0,1). Here, we adopt Halls idea and outline the procedure in three phases. In the
pilot phase an initial sample of size m>2 is taken to start the sequential phase, where

observations are taken one-by-one, to estimate only a fraction 7 of »® according to the
following rule

Ny=infnzm:n>y Ag(W,)}. @.D
The final sample size is then defined by
N=max { N, [A{ Wy)]1+1) 32)

Where, [ x] denotes the largest integer less than or equal to x . In the accelerated sequential
phase, the remaining observations (N— Nj) are taken in one last bulck and we then proceed
to estimate u using the N observations.

The following lemma is an immediate consequence of Theorem 1.

Lemma 2. Let N, be defined by (3.1). Then, under Assumptions 1-3, we have as A—oo,

E{h(y 'ND}=h(n")— v eh' (n") + o( K (A)).
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The main result concerning the accelerated sequential procedure defined by (3.1) and (3.4) is
given in Theorem 2, which is proved in the appendix.

Theorem 2. Let N be defined by (3.4). Then, under .the Assumptions 1-3, we have as

A—oo,

E{W(N)} = h(n") — 9k’ (n") + o( K" (A)).
Where, 7 is given by

R

Remark 2. As in Remark 1, the above expression for 7 represents the cost of not knowing
the nuisance parameter 6 if we accelerate the purely sequential procedure by a predetermined
coefficient y (0, 1).

4. Applications

It is shown here, by way of examples, how to use Theorem 2 to solve several point and
interval estimation problems. For point estimation, the optimal sample size is that value of
which minimizes the risk R,(A)= E{L,(A)}, where L,(A) is the following squared error
loss plus linear cost function L,(A)=A(z,—u)*+n, and A>0 is known constant.

As for interval estimation, given @ (0, 1), the optimal sample size is that value of n for
which P{u €1,})=>1—a, where I, is a confidence interval of fixed width @>0.

In each case we begin by finding the optimal sample size z".  Since n’ depends on the
unknown parameter @, we resort to the accelerated sequential procedure defined by (3.3)-(3.4)

—~

to estimate #'. Once, N is determined, we propose g as a point estimate g and compute
the accelerated sequential risk R ,-(A), and the regret,

w(A)= E{L(A)}— R ,-(A).

On the other hand, we propose Iy as a confidence interval for g and compute P{u €Iy}

Example 1. Exponential distribution.
Let Y, Y,, ... be a sequence of iid random variables having the following exponential
distribution
Ayip, )=1/0e 7 y>p,
where the location parameter ¢ €K and the scale parametér 48>0 are assumed unknown.

For a random sample of fixed size #7( =2), the usual estimators of ¢ and 6 are given by

=Ty, G=(n— D7 R (Yim i)

1<ign
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respectively. Now let W, W, ..., W, be iid. random variables from- R -:;0,6). Then, it
follows from Lemma 6 of Lombard and Swanepoel (1978) that the distribution of {TV_,,, n=2}
is identical to that of {5:,, n=>2} which is equivalent to Assumption 3. Further, it is easily
verified that = 6.

Point estimation for g . Since the risk is given by
R(A)=2A6n*+n
The optimal sample size takes the form in (1.1) with (44)"® and g(8)=06%?. Now, the
accelerated sequential risk is given by
E(LMA)}=(1/2) (n")’E(N"%) + E(N).
Hence, using Theorem 2 with A(N)=N , we obtain
E(N)=n"—5/9A""—1/2+ o(1),

and
E(N ) =(n")"2+2(x") "% 11/(90 —1/2) + o( A7)
respectively though that
E{LpM(A)}=3/2n"+2/37 1+ 0(1).

Therefore, the regret is given by w(A)=(2/3)7 '+ 0(1), which is bounded and independent
of A.

Interval estimation of g. Consider a fixed width confidence interval for x of the form
I,=(u,—d, i,). The associated confidence coefficient is given by

P(# EI,,)=1—€(—M/0).

Let a=—An(a), since we require the confidence coefficient to be at least 1—a then the
optimal sample size would be as in (1.1)with A=a/d and g(8)= 6. Further, since

Py ely)=1—E{e %)
then, using Theorem 2 with A(N)=e "¥¥? we obtain
Py ely)=1—a—aaa—y+2)/2m")+o(d) where, 1=(a— r+2)/(27)

represents the cost of not knowing the nuisance parameter 6.

Example 2. An intra—class model.

Let Y3, Y5, ... be a sequence of i.id random variables such that Y;=u+ ¢, , where, ¢, are
- : _ _ [ i=j
normally distributed with E(&;)=0 and Cow(e;, ;) = { o it

The parameters ¢ €R,¢?>0 and p (—1,0) are assumed unknown.
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For a random sample of size n( =2), the usual estimators of u« is ;7; =n"! Y, .
&

Further, it can be chosen that f, ~N g, On '+ pd®) where, = *(1—p) . On the other
hand, the usual estimator of 6 is given by

fr=(n—D 7' R(Yi— i),
Now consider the following Helmerts transformation,

Z= GG+ D) 2 (F(Y,=i¥500)) i= 1, =,

and
W,=(32)Vn

Then let W;=2Z% Then, Wi~82*(1) . It is easily verified that Assumption 3 holds true
with £=26* .

Point estimation of x. The risk here is given by
R(A)=A0/n+4pd+n .
Thus, the optimal sample size is of the form in (1.1) with A=AY? and g(6) = 6"
Further, since the accelerated sequential risk is given by
E(LMA)}=(n")’E(N" )+ Apd®+ E(N),
then using Theorem 2 with #(N)=N and A(N)=N !, we obtain
E(N)=n"—(3/4y ' =1/2)+ o(1),

and
BN HY=(n")"1=G/4r'—1/2X(n") 2+ 0(1),
R,(A)=2n"+ Apd,

respectively, so that
E{L)(A)}=2n"+ Apd®+ o(1).

Hence, the regret is given by

0=(1/2)r""+0(1) .

Interval estimation of . Consider a fixed width confidence interval for g of the form
I,=(i,—d, g,+d) . Let &(-) denote the standard normal distribution function and set

a= 01— a/2). Thus, the confidence coefficient is given by

P(u elI,) =20(d/V 6/n+ pd)—1
220(d/V 6/n)—1 .

Since the confidence coefficient is required to be at least (1 —a), then the optimal sample
size would be as in (1.1) with A=a?/d? and g(6)=6 . Now, it can be shown that
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Plp €ly) =2E{0(d/V O/N+ pdd)} -1
>2E{0(d/V 8/ N)} —1

Hence, using Theorem 2 with A(N)= @(d/V 8/N). We obtain
P(p ely)=(1—a)— ag(a) (@®— 7+5)/(2yn") + o(d?).
Here the cost of not knowing the nuisance parameter 6 is given by

7=(a*—r+5)/(27).

Remark 3. The results of Theorem 1 and 2 still hold true for ¢ €R* k22 However,
the initial sample size should now be m=k+ 1.

Example 3. A fixed size confidence region for the regression parameters Consider the model
Y,=X,8+¢€, where Y, is an observed #%nXx1 vector, X,is an a known #Xp matrix of

rank p, B is a px1 vector of unknown regression parameters and &, is an #X1 random
vector distributed as N,(0, 81), where 1 is #nXn identity matrix and 6 is unknown
parameter. We assume that #) p>2.

Let G7 denote the transpose of a matrix G. Then, the usual estimators of 8 and 8 are
given by

B.=(X1X,) Xy,

and,
Go=(n—1) " (Y~ X,B,) (Y,— X,B,)

respectively. Further, let Z), ...,Z,_, be an orthogonal basis for the error space, i.e., the null
space of X1.. It is easily verified that Assumption 3 holds true with Wj=2% ~6x*(1) and
=26

In order to study the large sample properties of f,, it is usually assumed that the matrix
(n 'XTX )converges to a positive definite matrix as # —oo. Thus, we use (n'XTx,)
the weight matrix in the following fixed size ellipsoidal confidence region for §,

B,=(B €R"(B,—AT(n ' XIX ) B,— H<d?) .
The confidence coefficient associated with B, is given by
P(8 €B,)=F(nd*/0),

where, F( -) is the distribution function of a x*($). Let @, be such that F(a,)=1—a .
Then, since we require the confidence coefficient to be at least (1—a), the optimal sample
size would be as in (1.1) with A=a,/d* and g(6)=6 .

We start with the sample size m=>p+1 and use the accelerated sequential procedure
defined in (3.3)-(34) to determine N. Then, we compute Baand the confidence region B,
for A. It can be shown that
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P(B =By) = E{F(Nd"/6)}.
Hence, using Theorem 2 with A(N) = F(Nd?/6), we obtain
P(B €By=(1—a)— a,F (a,)a,— r+6—1)/2rn") + o(d>.

The cost on not knowing the nuisance parameter is given by

1={a,—r+6—25}/(27) .

Appendix

Proof of LLemma 1. Consider (2.1) and expand WN is a Taylor series expansion around 6
and carry out some algebraic manipulations to obtain

E(M—n")*=2%(g'(0)*E(Wy— 0)*+ E(r,)
where, 7 is the remainder term. It is easily shown that E(#,) is of order o(A). Further,

using the asymptotic normality of {—VV;, #=>2}, and the integrability of ( Wy — )%, we obtain

E(Wy— 0% =72/n"+o(A7Y),
and (#) is established. To prove (77) let f denote the inverse function of g. Then,
recalling (2.1) we can write Sy=MAM/A)— Dy , where, Dy, represents the excess under

the boundary at the stopping time. Using the results of Woodroofe (1997) we have that
E(Dy) =1 , while Walds Lemma yields

E(Sy)= 6E(M). (A.1)
Thus, taking the expectation of both sides of (A.1) we get
OE(M) = E{MAM/N)}=v. (A.2)

Let ¥;be the remainder term in Taylor series expansion of {MAM/A)} around »* and take
the expectation to get

E{MAM/2) = 6E(M) + g(6)f (e(6)E(M—n")? (A.3)

4L (—"—"i)z{g(e)f'(g(o))+2f<g<e))}+E(r)
2n*\ db 2

where use has been made of (z), and (#)is established upon substituting (A.3) in (A.2),
rearranging terms and observing that

ra=(1/6)A"2(M— n" Y} (WAL (I +3F (W] A)),

where 1 is a random variable lies between M and %*. It follows that,
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E(ry) <(UUB)AEIM—n")* S8 ((nfaf " (nl2)+3£" (n]A))
= U/eA A=t S0 L) _ oy

by (##) of Lemma 1 and Assumption 2.

Proof of Theorem 1. Let 73 denote the remainder term in a Taylor series second order
expansion of A(M) around #* . It can be shown that E(A(M))=o0(h'(A)). Thus taking
the expectation of the above mentioned expansion and using Lemma 1, and Assumption 1
establish the theorem.
Proof of Theorem 2. Recalling (3.3 and (3.4) we can write

Ny= Yag(Wy) + V, (A.4)
where, Vy, is a random variable representing the excess over the boundary after termination

of the sequential phase, and
N=2g( Wy) + Uy, (A.5)
where, Uy, is asymptotically uniform over (0, 1) as in Hall (1983). Substituting (A.4) into
(A.5) we obtain
N=Y'N,\— Y 'Vy+ Uy, .
Hence, using Taylors Theorem, we get
AN =hY 'N)+(Uy— Y IR (Y N +) + 7,
where 7, is the remainder term. Now, similar arguments to those used to evaluate E(7y)
can be used to show that E(#3) is of order o(4(A)). Further, it follows from Theorem 2.1
of Woodroofe (1977) that N, and V) are asymptotically independent. Furthermore, following
the lines of Hamdy(1988), it can be shown that N, and Uy, are asymptotically uncorrelated.
Moreover, E{h'( Y_lNl)}=h'(n')+o(h"(/1))) Hence, using Lemma 2, we get

E(W(N)} = h(n") = (Y &+ E(V,)} = 0.5}k (n") + o( &' (A)).

The theorem is established upon proving that E( VN1)=—;:;~{ ddna }+0(1) To this end
recall (A.4) and write

Sy, = NS (N;— V) (Ap) . (A.6)

SM = le(Nl//IT) — Dy,

But,

Therefore, we obtain
Dy, = N{AN/AP) — AN, [Xr— Vi /[AD)},

and by Taylor Theorem we have,
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Dy, = (M 2nF (Ny[AD) Va+ 7

where, 7y is the remainder term. But,

E{N\f (N /An)}=yn"f (n" [2)+ 0(A)
Hence upon observing that E(7g) = o(1), we get

v=(n"[A)f (n"[AE(Vy3+ o(1)
observe also that f g(6) =48 taking the derivative of both sides we get f g(8)g (8 =1.

Therefore, fg(6)=1/g'(6) we get E(Vy)= nV. [—%’5—} +0(1) This completes the proof.
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