Abstract
This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.