• Title/Summary/Keyword: weighted symptom model

Search Result 6, Processing Time 0.02 seconds

Fault diagnosis for chemical processes using weighted symptom model and pattern matching (가중증상모델과 패턴매칭을 이용한 화학공정의 이상진단)

  • Oh, Young-Seok;Mo, Kyung-Ju;Yoon, Jong-Han;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.520-525
    • /
    • 1997
  • This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.

  • PDF

A study on fault diagnosis for chemical processes using hybrid approach of quantitative and qualitative method (정성적, 정량적 기법의 혼합 전략을 통한 화학공정의 이상진단에 관한 연구)

  • 오영석;윤종한;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.714-717
    • /
    • 1996
  • This paper presents a fault detection and diagnosis methodologies based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. At the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model(WSM) is used to generate those candidates. The weight is determined from dynamic simulation. Using WSMs, the methodology can generate the cause candidates and rank them according to the probability. Secondly, the fault propagation trends identified from the partial or complete sequence of measurements are compared to the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies and showed satisfactory diagnostic resolution.

  • PDF

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.

Diagnostic Yield of Diffusion-Weighted Brain Magnetic Resonance Imaging in Patients with Transient Global Amnesia: A Systematic Review and Meta-Analysis

  • Su Jin Lim;Minjae Kim;Chong Hyun Suh;Sang Yeong Kim;Woo Hyun Shim;Sang Joon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1680-1689
    • /
    • 2021
  • Objective: To investigate the diagnostic yield of diffusion-weighted imaging (DWI) in patients with transient global amnesia (TGA) and identify significant parameters affecting diagnostic yield. Materials and Methods: A systematic literature search of the MEDLINE and EMBASE databases was conducted to identify studies that assessed the diagnostic yield of DWI in patients with TGA. The pooled diagnostic yield of DWI in patients with TGA was calculated using the DerSimonian-Laird random-effects model. Subgroup analyses were also performed of slice thickness, magnetic field strength, and interval between symptom onset and DWI. Results: Twenty-two original articles (1732 patients) were included. The pooled incidence of right, left, and bilateral hippocampal lesions was 37% (95% confidence interval [CI], 30-44%), 42% (95% CI, 39-46%), and 25% (95% CI, 20-30%) of all lesions, respectively. The pooled diagnostic yield of DWI in patients with TGA was 39% (95% CI, 27-52%). The Higgins I2 statistic showed significant heterogeneity (I2 = 95%). DWI with a slice thickness ≤ 3 mm showed a higher diagnostic yield than DWI with a slice thickness > 3 mm (pooled diagnostic yield: 63% [95% CI, 53-72%] vs. 26% [95% CI, 16-40%], p < 0.01). DWI performed at an interval between 24 and 96 hours after symptom onset showed a higher diagnostic yield (68% [95% CI, 57-78%], p < 0.01) than DWI performed within 24 hours (16% [95% CI, 7-34%]) or later than 96 hours (15% [95% CI, 8-26%]). There was no difference in the diagnostic yield between DWI performed using 3T vs. 1.5T (pooled diagnostic yield, 31% [95% CI, 25-38%] vs. 24% [95% CI, 14-37%], p = 0.31). Conclusion: The pooled diagnostic yield of DWI in TGA patients was 39%. DWI obtained with a slice thickness ≤ 3 mm or an interval between symptom onset and DWI of > 24 to 96 hours could increase the diagnostic yield.

Associations Between Heart Rate Variability and Symptom Severity in Patients With Somatic Symptom Disorder (신체 증상 장애 환자의 심박변이도와 증상 심각도의 연관성)

  • Eunhwan Kim;Hesun Kim;Jinsil Ham;Joonbeom Kim;Jooyoung Oh
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.31 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Objectives : Somatic symptom disorder (SSD) is characterized by the manifestation of a variety of physical symptoms, but little is known about differences in autonomic nervous system activity according to symptom severity, especially within patient groups. In this study, we examined differences in heart rate variability (HRV) across symptom severity in a group of SSD patients to analyze a representative marker of autonomic nervous system changes by symptoms severity. Methods : Medical records were retrospectively reviewed for patients who were diagnosed with SSD based on DSM-5 from September 18, 2020 to October 29, 2021. We applied inverse probability of treatment weighting (IPTW) methods to generate more homogeneous comparisons in HRV parameters by correcting for selection biases due to sociodemographic and clinical characteristic differences between groups. Results : There were statistically significant correlations between the somatic symptom severity and LF (nu), HF (nu), LF/HF, as well as SD1/SD2 and Alpha1/Alpha2. After IPTW estimation, the mild to moderate group was corrected to 27 (53.0%) and the severe group to 24 (47.0%), and homogeneity was achieved as the differences in demographic and clinical characteristics were not significant. The analysis of inverse probability weighted regression adjustment model showed that the severe group was associated with significantly lower RMSSD (β=-0.70, p=0.003) and pNN20 (β=-1.04, p=0.019) in the time domain and higher LF (nu) (β=0.29, p<0.001), lower HF (nu) (β=-0.29, p<0.001), higher LF/HF (β=1.41, p=0.001), and in the nonlinear domain, significant differences were tested for SampEn15 (β=-0.35, p=0.014), SD1/SD2 (β=-0.68, p<0.001), and Alpha1/Alpha2 (ß=0.43, p=0.001). Conclusions : These results suggest that differences in HRV parameters by SSD severity were showed in the time, frequency and nonlinear domains, specific parameters demonstrating significantly higher sympathetic nerve activity and reduced ability of the parasympathetic nervous system in SSD patients with severe symptoms.

Non-linear Relationship Between Body Mass Index and Lower Urinary Tract Symptoms in Korean Males

  • Choi, Chang Kyun;Kim, Sun A;Jeong, Ji-An;Kweon, Sun-Seog;Shin, Min-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.3
    • /
    • pp.147-153
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate the association between body mass index (BMI) and severe lower urinary tract symptoms (LUTS) in Korean males. Methods: This study was conducted on males aged ${\geq}50years$ who participated in the 2011 Korean Community Health Survey. LUTS severity was assessed using the Korean version of the International Prostate Symptom Score (IPSS) questionnaire, and was dichotomized as severe (IPSS >19) and non-severe ($IPSS{\leq}19$). BMI was divided into 6 categories: <18.5, 18.5-22.9, 23.0-24.9, 25.0-27.4, 27.5-29.9, and ${\geq}30.0kg/m^2$. To evaluate the relationship between BMI and LUTS, a survey-weighted multivariate Poisson regression analysis was performed to estimate prevalence rate ratios (PRRs). Age, smoking status, alcohol intake, physical activity, educational level, household income, and comorbidities were adjusted for in the multivariate model. Results: A U-shaped relationship was detected between BMI and severe LUTS. Compared with a BMI of $23.0-24.9kg/m^2$, the PRR for a BMI < $18.5kg/m^2$ was 1.65 (95% confidence interval [CI], 1.35 to 2.02), that for a BMI of $18.5-22.9kg/m^2$ was 1.25 (95% CI, 1.09 to 1.44), that for a BMI of $25.0-27.4kg/m^2$ was 1.20 (95% CI, 1.00 to 1.45), that for a BMI of $27.5-29.9kg/m^2$ was 1.11 (95% CI, 0.83 to 1.47), and that for a BMI ${\geq}30.0kg/m^2$ was 1.85 (95% CI, 1.18 to 2.88). Conclusions: This study showed that both high and low BMI were associated with severe LUTS.