On p-adic analogue of hypergeometric series

  • Published : 1997.01.01

Abstract

In this paper we will study a p-adic analogue of Kummer's theorem[6],[7], which gives the value at x = -1 of a well-piosed $_2F_1$ hypergeometric series.

Keywords

References

  1. Pacific J. Math. v.94 Hypergeometric series with a p-adic variable J. Diamond
  2. Inst. Hautes Etudes Sci.Publ. Math. v.37 p-adic cycles B. Dwork
  3. Number Theory, Geometry and related Topic v.3 A note on p-adic analogue of hypergeometric functions H. S. Kim;T. Kim
  4. Proccedings, Queens Number Theory Conference the hypergeometric function with p-adic parameters N. Koblitz
  5. J. Fac. Sci. Univ. v.22 A p-adic analogue of the T - function Y. Morita
  6. Special Functions E. D. Rainville
  7. Generalized Hypergeometric Functions L. J. Slater
  8. J. Number Theory v.41 Aperey numbers, numbers, Jacobi sums, and special values of generalized p-adic hypergeometric functions P. T. Young
  9. J. Number Theory v.52 On Jacobi sums, Multinomial Coefficients, and p-adic Hypergeometric Functions P. T. YOung