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ON p-ADIC ANALOGUE OF
HYPERGEOMETRIC SERIES

YoNG Sup KiM AND HYEONG KEE SONG

ABSTRACT. In this paper we will study a p-adic analogue of Kummer’s
theorem[6], [7], which gives the value at # = —1 of a well-piosed 3 F}
hypergeometric series.

1. Introduction

We let F(a,b;c;x) be the hypergeometric series defined by
(1) Fla,bc;x) = 2 Fy(a, b; Z (a)n
a,b;c;z) = 2 Fy(a,b;c; ) (c)nn'
for ¢ neither zero nor a negative integer. In (1) the notation («), is given
by

fn=0

17
(@) = { ala+1)(a+2)(a+n-1), fneN={1,2.3,--}.

Kummer [6,7] obtained

I(1+a-bI(4

, )
F(a, b;1 —b—1)= '
(.61 ta )= %y 3¢ = O)I(5 + 30)

N. Koblitz[4] proved that for a,b € Z, the value of the continuation
of F(a,b;1;2)/F(a’,b';1;2P) at « = 1 is analytic I'y(a)',(5)/Tp(a + b),
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where Z, is the ring of p-adic integers and I', is the p-adic gamma
function [5]. In this article, we will prove that the ratio

F(2a,b;c;x)
F(2a', ¥ c'; xP)

H,(2a,b;¢;7) =

has an analytic continuation to x = —1 if certain conditions on a. b and ¢
are satisfied, and show that the value of the continuation of F(2a, b; 2a —
b+ 1;2)/F(2a',b';2a' — b + 1;77) at = = —1, for any appropriate a, b
and ¢ in Zp, has T'p(14 2a — b)T,(1 + a)/Tp(1 4+ 2a)T,(1 + a — b).

2. Hypergeometric Series with p-adic Parameters

Let p be an odd prime, n a natural number, and |p| = p~!. The p-
adic gamma function Iy is defined by setting I',(0) = 1, and for positive
integer n by

[p(n)=(-1)"I t<n b
(t,p)=1

This can be extended to a continuous function from Ly to Zy.

THEOREM 1. Let n € N. Then
Tp(n+1) = (~1)"'n!l/[n/p)pls!

where [ .] is the Gauss symbol.

This can be immediately proved from the above definition.

Let —a = ap+a1p+azp’+--- € Z, . Let a — a’ be the map induced
by shifting the p-adic expansion of —a:

—a' = a; +ap+azp’ + - -+,

Let a(9 = q,a() = (a=DY. Thena € Qn [0,1) if and only if al* = «
for some 1.
The following theorem was well-known due to Kummer[6,p.68].
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THEOREM 2. If1+ 2a — b is neither zero nor a negative integer, and
Re(b) < 1 for convergence,

| . T(1+2a-b(1+a)
F(2a, b1+ 20 = b —1) = 59 =1 1 20)

Ifa,b and c are in Z,, then the hypergeometric series

(2a)p(b)z™
F(2a,b;c;z) = St
) ”gu (¢)pm!
does not converge at r = —1 unless the series terminates.

In [2], B. Dwork has shown that for a,b,¢ € Z,, a certain ratio of
the hypergeometric series can be extended as an analytic element (i.e.,
uniform limit of rational functoins) to a domain larger than the disk of
convergence (|z| < 1) of the series.

a' is defined as (a + a)/p, where a is the lecast nonnegative teger

= —a (mod p). @ is al®).

The following result is partially derived from the method of Diamond
[1,p.267].
THEOREM 3. For a,b,c € Z, ,|c(i)] =1 and if 2a; = ¢; with b; < 2a;

for all i > 0, then |Fy(2a'?,6(); ¢V —1)| = 1 where a;,b; and ¢; are the
i-th digits in the p-adic expansion of —a, —b and —c,

p’ -1 :
(2a)n(b)pz™
Fy(2a,b¢;2) = Z ()c) o

n=0

PROOF. It is easy to see that @) = —a'¥ =z a; (mod p). Hence the
conditions a; +b; — 1 < ¢; are the same as a4 1 < &Y. To prove
Theorem 3 it is sufficient to work with ¢« = 0. The given condition that
|c'| =1 implies that ¢ 4+ ¢ # 0 (mod p?). Let b < a. Then

b

Fi(2a,b;e;—-1) = Z

=0

(—5);'(‘20)1

e, (=1)7  (mod p).



14 Yong Sup Kim and Hyeong Kee Song

If 2a = ¢, then b # 0 leads to
b A
Fi(2a,b;¢;-1) = ) =220 (mod p).
. =2 (0) =220 moan

=0

So ' ‘
[Py (2009500 9, 1) = 1

holds.

Let D be a quasi-connected subset of Q, (Qp is the field of p-adic
numbers) such that for all z € D and all i > 0

|F1(2a9,59:1 4 20 — 50 _1)] = 1.
Dwork Theorem : For r > s there are formal congruences
Fri1(2)Fy(a?) = Fy(+?)Fupa(z) (mod 3712, (2).
]The following theorem can be easily proved by Dwork theorem [2,p.37-
42].

THEOREM 4. Ifa,b,c € Z, and if the following conditions are satisfied
fori=0,1,2,--.

(2) W] =1,

(3) if c¢#1,then 2aM b < &

(4) [F1(2a,509;¢0; —1)| = 1,

F(2a,b;¢;1) . Fep1(2a,b;c; )
bic x) = ' — ki
Hp(2a, acyl‘) F(2al.’bl;cl;xp) SLOO FB(QG',b’;C';IP)
has an analytic continuation to z = —1 € D.

Putting ¢; = 1 + 2a; — b; in Theorem 3, b; = 1 holds.
So b; — a; < p— 1. Therefore we get a corollary as follows ;.

COROLLARY 5. Let T denote the set of all (a,b) € Z,* such that the
conditions of Theorem 3 are satisfied for the series F(2a,b;14+2a—b; -1).
If the following conditions are satisfied for i = 0,1.2,---

(5) 2(1,‘ Z b,‘ for all 1 2 0;
(6) If2a # b, then b;~a; < p—1 foralli > 0, then (a, b) € T, where
ai, b; are the i-th digits in the p-adic expansion of —a, —b.
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Corollary 5 means H,(2a,b; 1+ 2a — b; ) has an analytic continuation
at £ = —11if 2a; > b, and b; —a; <p—1foralli > 0.
Conclusively, H,(2a,b;1 4 2a — b;z) is continuous on T x Z, x D by
Dwork Theorem.
The generalized hypergeometric series

‘TS
kFr—1(ag, - Jary1, 0 Yk—1; ) Z( e )3'
k—1

for all values of x for which it converges.
If the parameters satiafy

l+ay=m+ar=" - =75, + ag,
ths series is said to be well-poised. We finally prove a p-adic analogue
of Kummer’s theorem, which gives the value at z = —1 of well-poised

2 F series.

THEOREM 6. Fora,b € Z, with 2a; > b; for all 1 > 0; If 2a # b, then
b,‘ —a; <p-— 1,
Fp(142a— b1+ a)

7 H,(2a,b;1+2a — b;—1) = ‘ .
™) p(2a, b1+ 2a )= AT 2,1 4a=b)

PROOF. By continuity of ', it suffices to prove (7) when a and b are
non-positive integers. Since p is odd prime, we obtain
F(2a,b;1 4 2a — b; —1)
F(2a’.b/;1 4 2a’ — b'; - 1)
_I(2a-b+1)[(a+1) [(2a’ — b+ 1)I(a’ + 1)
T I(2a+ D)T(a—b+ 1)/F(2a’ + 1)I'(a’ — b/ + 1)
(2a — b)la! (24’ — b')la’!
(2a)(a — b)!" (2a")!(a’ -~ b)!
(2a — b)la! (Za)'(a - b)!

[ty g1 2eppl I pastypt 5

Hp(2a,b;1 4 2a ~ b;-1) =

By using Theorem 1, we get

(—1)2e=bHID (2a — b+ 1)(—1)*T'Tp(a+ 1)
(=1)?%41Tp(2a + 1)(=1)* =" Tp(a — b+ 1)
_ Tp(2a-b+ 1T (a +1)

- T,(2a+1)T,(a—b+1)

H,(2a,b;1 4 2a —b;—1) =

as desired.
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By using Theorem 1, we get

(=) 11,20 — b4 1)(=1)"ITy(a + 1)
(—1)22*10p(2a 4+ 1)(=1)*—*HT (a — b + 1)
Tp(2a—~b4+1)Tp(a+1)

Fp2a+1)p(a—b+1)°

H,(2a,b;1+2a —b;—1) =

as desired.
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