ON p-ADIC ANALOGUE OF HYPERGEOMETRIC SERIES

YONG SUP KIM AND HYEONG KEE SONG

ABSTRACT. In this paper we will study a p-adic analogue of Kummer's theorem[6], [7], which gives the value at x = -1 of a well-piosed $_2F_1$ hypergeometric series.

1. Introduction

We let F(a, b; c; x) be the hypergeometric series defined by

(1)
$$F(a,b;c;x) = {}_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}x^{n}}{(c)_{n}n!}$$

for c neither zero nor a negative integer. In (1) the notation $(\alpha)_n$ is given by

$$(\alpha)_n = \begin{cases} 1, & \text{if } n = 0\\ \alpha(\alpha + 1)(\alpha + 2) \cdots (\alpha + n - 1), & \text{if } n \in \mathbb{N} = \{1, 2, 3, \cdots\}. \end{cases}$$

Kummer [6,7] obtained

$$F(a,b;1+a-b;-1) = \frac{\Gamma(1+a-b)\Gamma(\frac{1}{2})}{2^a\Gamma(1+\frac{1}{2}a-b)\Gamma(\frac{1}{2}+\frac{1}{2}a)}.$$

N. Koblitz[4] proved that for $a, b \in \mathbb{Z}_p$ the value of the continuation of $F(a, b; 1; x)/F(a', b'; 1; x^p)$ at x = 1 is analytic $\Gamma_p(a)\Gamma_p(b)/\Gamma_p(a+b)$,

Received June 2, 1996. Revised November 2, 1996.

¹⁹⁹¹ AMS Subject Classification: 33C20, 11D88, 11F85.

Key words and phrases: Hypergeometric series, p-adic gamma function.

This paper was supported by research fund of Wonkwang University in 1996.

where \mathbb{Z}_p is the ring of p-adic integers and Γ_p is the p-adic gamma function [5]. In this article, we will prove that the ratio

$$H_p(2a,b;c;x) = \frac{F(2a,b;c;x)}{F(2a',b';c';x^p)}$$

has an analytic continuation to x = -1 if certain conditions on a, b and c are satisfied, and show that the value of the continuation of $F(2a, b; 2a - b + 1; x)/F(2a', b'; 2a' - b' + 1; x^p)$ at x = -1, for any appropriate a, b and c in \mathbb{Z}_p , has $\Gamma_p(1 + 2a - b)\Gamma_p(1 + a)/\Gamma_p(1 + 2a)\Gamma_p(1 + a - b)$.

2. Hypergeometric Series with p-adic Parameters

Let p be an odd prime, n a natural number, and $|p| = p^{-1}$. The p-adic gamma function Γ_p is defined by setting $\Gamma_p(0) = 1$, and for positive integer n by

$$\Gamma_p(n) = (-1)^n \prod_{\substack{t < n \\ (t,p)=1}} t.$$

This can be extended to a continuous function from \mathbb{Z}_p to \mathbb{Z}_p .

Theorem 1. Let $n \in \mathbb{N}$. Then

$$\Gamma_p(n+1) = (-1)^{n+1} n! / [n/p]! p^{\left[\frac{n}{p}\right]}$$

where [.] is the Gauss symbol.

This can be immediately proved from the above definition.

Let $-a = a_0 + a_1 p + a_2 p^2 + \cdots \in \mathbb{Z}_p$. Let $a \longmapsto a'$ be the map induced by shifting the *p*-adic expansion of -a:

$$-a' = a_1 + a_2 p + a_3 p^2 + \cdots,$$

Let $a^{(0)}=a, a^{(i)}=(a^{(i-1)})'$. Then $a\in\mathbb{Q}\cap[0,1)$ if and only if $a^{(i)}=a$ for some i.

The following theorem was well-known due to Kummer[6,p.68].

THEOREM 2. If 1 + 2a - b is neither zero nor a negative integer, and Re(b) < 1 for convergence,

$$F(2a, b; 1 + 2a - b; -1) = \frac{\Gamma(1 + 2a - b)\Gamma(1 + a)}{\Gamma(1 + a - b)\Gamma(1 + 2a)}.$$

If a, b and c are in \mathbb{Z}_p , then the hypergeometric series

$$F(2a, b; c; x) = \sum_{n>0} \frac{(2a)_n(b)_n x^n}{(c)_n n!}$$

does not converge at x = -1 unless the series terminates.

In [2], B. Dwork has shown that for $a, b, c \in \mathbb{Z}_p$, a certain ratio of the hypergeometric series can be extended as an analytic element (i.e., uniform limit of rational functions) to a domain larger than the disk of convergence (|x| < 1) of the series.

a' is defined as $(a + \bar{a})/p$, where \bar{a} is the least nonnegative integer $\equiv -a \pmod{p}$. $\bar{a}^{(i)}$ is $\overline{a^{(i)}}$.

The following result is partially derived from the method of Diamond [1,p.267].

THEOREM 3. For $a, b, c \in \mathbb{Z}_p$, $|c^{(i)}| = 1$ and if $2a_i = c_i$ with $b_i \leq 2a_i$ for all $i \geq 0$, then $|F_1(2a^{(i)}, b^{(i)}; c^{(i)}; -1)| = 1$ where a_i, b_i and c_i are the *i*-th digits in the p-adic expansion of -a, -b and -c,

$$F_s(2a, b; c; x) = \sum_{n=0}^{p^s-1} \frac{(2a)_n (b)_n x^n}{(c)_n n!}.$$

PROOF. It is easy to see that $\bar{a}^{(i)} \equiv -a^{(i)} \equiv a_i \pmod{p}$. Hence the conditions $a_i + b_i - 1 < c_i$ are the same as $\bar{a}^{(i)} + \bar{b}^{(i)} - 1 < c^{(i)}$. To prove Theorem 3 it is sufficient to work with i = 0. The given condition that |c'| = 1 implies that $c + \bar{c} \neq 0 \pmod{p^2}$. Let $\bar{b} \leq \bar{a}$. Then

$$F_1(2a, b; c; -1) \equiv \sum_{i=0}^{\bar{b}} \frac{(-\bar{b})_j (2a)_j}{j! (c)_j} (-1)^j \pmod{p}.$$

If $2\bar{a} = \bar{c}$, then $\bar{b} \neq 0$ leads to

$$F_1(2a,b;c;-1)=\sum_{j=0}^{ar{b}}inom{ar{b}}{j}=2^{ar{b}}
ot\equiv 0\pmod{p}.$$

So

$$|F_1(2a^{(i)}, b^{(i)}; c^{(i)}; -1)| = 1$$

holds.

Let \mathcal{D} be a quasi-connected subset of \bar{Q}_p (Q_p is the field of p-adic numbers) such that for all $x \in \mathcal{D}$ and all $i \geq 0$

$$|F_1(2a^{(i)}, b^{(i)}; 1 + 2a^{(i)} - b^{(i)}; -1)| = 1.$$

Dwork Theorem : For $r \geq s$ there are formal congruences

$$F_{r+1}(x)F_s(x^p) \equiv F_r(x^p)F_{s+1}(x) \pmod{p^{s+1}\mathbb{Z}_p(x)}.$$

The following theorem can be easily proved by Dwork theorem [2,p.37-42].

THEOREM 4. If $a, b, c \in \mathbb{Z}_p$ and if the following conditions are satisfied for $i = 0, 1, 2, \cdots$

- (2) $|c^{(i)}| = 1$,
- (3) if $c \neq 1$, then $2\bar{a}^{(i)}, \bar{b}^{(i)} < \bar{c}^{(i)}$,
- (4) $|F_1(2a^{(i)}, b^{(i)}; c^{(i)}; -1)| = 1$

$$H_p(2a,b;c;x) = \frac{F(2a,b;c;x)}{F(2a',b';c';x^p)} = \lim_{s \to \infty} \frac{F_{s+1}(2a,b;c;x)}{F_s(2a',b';c';x^p)}$$

has an analytic continuation to $x = -1 \in \mathcal{D}$.

Putting $c_i = 1 + 2a_i - b_i$ in Theorem 3, $b_i = 1$ holds. So $b_i - a_i . Therefore we get a corollary as follows;$

COROLLARY 5. Let T denote the set of all $(a,b) \in \mathbb{Z}_p^2$ such that the conditions of Theorem 3 are satisfied for the series F(2a,b;1+2a-b;-1). If the following conditions are satisfied for $i=0,1,2,\cdots$;

- (5) $2a_i \geq b_i$ for all $i \geq 0$;
- (6) If $2a \neq b$, then $b_i a_i < p-1$ for all $i \geq 0$, then $(a, b) \in T$, where a_i, b_i are the *i*-th digits in the *p*-adic expansion of -a, -b.

Corollary 5 means $H_p(2a, b; 1+2a-b; x)$ has an analytic continuation at x = -1 if $2a_i \ge b_i$ and $b_i - a_i < p-1$ for all $i \ge 0$.

Conclusively, $H_p(2a, b; 1 + 2a - b; x)$ is continuous on $T \times \mathbb{Z}_p \times \mathcal{D}$ by Dwork Theorem.

The generalized hypergeometric series

$$_{k}F_{k-1}(\alpha_{1},\cdots,\alpha_{k};\gamma_{1},\cdots,\gamma_{k-1};x)=\sum_{s=0}^{\infty}\frac{(\alpha_{1})_{s}\cdots(\alpha_{k})_{s}x^{s}}{(\gamma_{1})_{s}\cdots(\gamma_{k-1})_{s}s!},$$

for all values of x for which it converges.

If the parameters satisfy

$$1 + \alpha_1 = \gamma_1 + \alpha_2 = \cdots = \gamma_{k-1} + \alpha_k,$$

ths series is said to be well-poised. We finally prove a p-adic analogue of Kummer's theorem, which gives the value at x = -1 of well-poised ${}_{2}F_{1}$ series.

THEOREM 6. For $a, b \in \mathbb{Z}_p$ with $2a_i \geq b_i$ for all $i \geq 0$; If $2a \neq b$, then $b_i - a_i ,$

(7)
$$H_p(2a,b;1+2a-b;-1) = \frac{\Gamma_p(1+2a-b)\Gamma_p(1+a)}{\Gamma_p(1+2a)\Gamma_p(1+a-b)}.$$

PROOF. By continuity of Γ_p , it suffices to prove (7) when a and b are non-positive integers. Since p is odd prime, we obtain

$$\begin{split} H_p(2a,b;1+2a-b;-1) &= \frac{F(2a,b;1+2a-b;-1)}{F(2a',b';1+2a'-b';-1)} \\ &= \frac{\Gamma(2a-b+1)\Gamma(a+1)}{\Gamma(2a+1)\Gamma(a-b+1)} / \frac{\Gamma(2a'-b'+1)\Gamma(a'+1)}{\Gamma(2a'+1)\Gamma(a'-b'+1)} \\ &= \frac{(2a-b)!a!}{(2a)!(a-b)!} / \frac{(2a'-b')!a'!}{(2a')!(a'-b')!} \\ &= \frac{(2a-b)!a!}{\left[\frac{2a-b}{p}\right]!p^{\left[\frac{2a-b}{p}\right]}\left[\frac{a}{p}\right]!p^{\left[\frac{2a}{p}\right]}} / \frac{(2a)!(a-b)!}{\left[\frac{2a}{p}\right]!p^{\left[\frac{2a-b}{p}\right]}!p^{\left[\frac{a-b}{p}\right]}}. \end{split}$$

By using Theorem 1, we get

$$\begin{split} H_p(2a,b;1+2a-b;-1) &= \frac{(-1)^{2a-b+1}\Gamma_p(2a-b+1)(-1)^{a+1}\Gamma_p(a+1)}{(-1)^{2a+1}\Gamma_p(2a+1)(-1)^{a-b+1}\Gamma_p(a-b+1)} \\ &= \frac{\Gamma_p(2a-b+1)\Gamma_p(a+1)}{\Gamma_p(2a+1)\Gamma_p(a-b+1)}, \end{split}$$

as desired.

By using Theorem 1, we get

$$\begin{split} H_p(2a,b;1+2a-b;-1) &= \frac{(-1)^{2a-b+1}\Gamma_p(2a-b+1)(-1)^{a+1}\Gamma_p(a+1)}{(-1)^{2a+1}\Gamma_p(2a+1)(-1)^{a-b+1}\Gamma_p(a-b+1)} \\ &= \frac{\Gamma_p(2a-b+1)\Gamma_p(a+1)}{\Gamma_p(2a+1)\Gamma_p(a-b+1)}, \end{split}$$

as desired.

References

- 1. J. Diamond, Hypergeometric series with a p-adic variable, Pacific J. Math. 94 (1981), 265-276.
- 2. B. Dwork, p-adic cycles, Inst. Hautes Etudes Sci. Publ. Math. 37 (1969), 27-115.
- 3. H. S. Kim and T. Kim, A note on p-adic analogue of hypergeometric functions, Number Theory, Geometry and related Topic 3 (1996), 103-107.
- 4. N. Koblitz, *The hypergeometric function with p-adic parameters*, in "Proceedings, Queens Number Theory Conference, 1979", 319-328.
- 5. Y. Morita, A p-adic analogue of the Γ function, J. Fac. Sci. Univ. Tokyo. 22 (1975), 255-266.
- 6. E. D. Rainville, Special Functions, Macmillan and Company, 1960.
- L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, London New York, 1966.
- 8. P. T. Young, Apèrey numbers, numbers, Jacobi sums, and special values of generalized p-adic hypergeometric functions, J. Number Theory 41 (1992), 231-255.
- 9. _____, On Jacobi sums, Multinomial Coefficients, and p-adic Hypergeometric Functions, J. Number Theory 52 (1995), 125-144.

Department of Mathematics Wonkwang University Iksan 570-749, Korea