FLOER HOMOLOGY AS THE STABLE MORSE HOMOLOGY

  • Darko Milinkovic (Department of Mathematics University of Wisconsin-Madison) ;
  • Oh, Yong-Geun (Department of Mathematics University of Wisconsin-Madison)
  • Published : 1997.11.01

Abstract

We prove that there exists a canonical level-preserving isomorphism between the stable Morse homology (or the Morse homology of generating functions) and the Floer homology on the cotangent bundle $T^*M$ for any closed submanifold $N \subset M$ for any compact manifold M.

Keywords

References

  1. Turkish J. Math. v.18 Graph moduli spaces and cohomology operations Betz, M;Cohen, R.
  2. Asterisque v.105-106 Quelques questions de geometrie symplectique Chaperon, M.
  3. private communication by Eliashberg and Sikorav Chekanov. Y.
  4. preprint Lagrangain intersection theory; Finite dimensional approach Eliashberg, Y;Gromov, M.
  5. J. Difer. Geom. v.28 Morse theory for Lagrangian intersections Floer, A.
  6. J. Differ. Geom. v.30 Witten;s complex complex and infinete dimensional Morse Theory Floer, A.
  7. Commun. Math. Phys. v.120 Symplectic fixed points and holomorphic spheres Floer, A.
  8. Math. Z. v.212 Coherent orientations for periodic orbot problems in symplectic geometry Floer, A.;Hofer, H.
  9. Proceedings of Georgia Topology Conference Morse homotopy and its quantization Fukaya, K.
  10. Zero-loop open strings in the cotangent bundle and Morse homotopy Fukaya, K;Oh, Y. G.
  11. Acta Math. v.127 Fourier integral operators. I Hormander, L.
  12. Floer homology of open subsets and a refinement of Arnol'd's conjecture Kasturirangan, R.;Oh, Y. G.
  13. Invent. Math. v.82 Persistence d'intersections avec la section nulle au conurs d'une isotopie Hamiltonienne dans un fibre cotangent Laudenbach, F.;Sikorav, J. C.
  14. Thesis in the University of Wisconsin-Madison Milinkovic, D.
  15. Proceedings of Workshop on Geometry Generating functions versus action functional stable Morse theory versus Floer theory Milinkovic, D.;Oh, Y. G.
  16. Lectures on the h-Cobordism Theorem Milnor, J.
  17. Jour. Differ. Geom Symplectic tpology as the geometry of action functional, I Oh, Y. G.
  18. Symplectic topology as the geometry of action functional, II Oh, Y. G.
  19. Naturality of Floer homology of open subsets in Lagrangian intersection theory Oh, Y. G.
  20. Thesis in University of Warwick Floer homology, Novikov rings and clean intersections Pozniak, M.
  21. Progress in Math. v.111 Morse Homology Schwarz, M.
  22. Comment. Math. Helvetici v.62 Problemes d'intersections et de points fixes en geometie hamiltonienne Sikowav, J. C.
  23. Systemes Hamiltoniens et topologie symplectique Sikorav, J. C.
  24. Theses, Unibersite Denis Diderot (Paris 7) Theret, D.
  25. Geom. Funct. Anal. v.45 Symplectic homology via generating functions Traynor, L.
  26. Math. Ann. v.292 Symplectic homology via generating functions Viterbo, C.
  27. Proceeding of ICM-1994 Generating of functions, symplecic geometry, and applications Viterbo, C.
  28. preprint Functors and computations in Floer homology with application, II Viterbo, C.
  29. A graduate course in the University of California-Berkeley Weinstein, A.