DIRICHLET FORMS, DIRICHLET OPERATORS, AND LOG-SOBOLEV INEQUALITIES FOR GIBBS MEASURES OF CLASSICAL UNBOUNDED SPIN SYSTEM

  • Lim, Hye-Young (Department of Mathematics Sogang University ) ;
  • Park, Yong-Moon (Dept. of Math. and Institute for Math. Sciences Yonsei University ) ;
  • Yoo, Hyun-Jae (Institute for Mathematical Sciences Yonsei University )
  • 발행 : 1997.08.01

초록

We study Diriclet forms and related subjects for the Gibbs measures of classical unbounded sping systems interacting via potentials which are superstable and regular. For any Gibbs measure $\mu$, we construct a Dirichlet form and the associated diffusion process on $L^2(\Omega, d\mu), where \Omega = (R^d)^Z^\nu$. Under appropriate conditions on the potential we show that the Dirichlet operator associated to a Gibbs measure $\mu$ is essentially self-adjoint on the space of smooth bounded cylinder functions. Under the condition of uniform log-concavity, the Gibbs measure exists uniquely and there exists a mass gap in the lower end of the spectrum of the Dirichlet operator. We also show that under the condition of uniform log-concavity, the unique Gibbs measure satisfies the log-Sobolev inequality. We utilize the general scheme of the previous works on the theory in infinite dimensional spaces developed by e.g., Albeverio, Antonjuk, Hoegh-Krohn, Kondratiev, Rockner, and Kusuoka, etc, and also use the equilibrium condition and the regularity of Gibbs measures extensively.

키워드

참고문헌

  1. Rev. Math. Phys. v.1 Dirichlet forms in terms of white noise analysis I: Construction and QFT examples S.Albeverio;T.Hida;J. Potthoff;M. Rockner;L. Streit
  2. Rev. Math. Phys. v.1 Dirichlet forms in terms of white noise analysis II: Closability and diffusion processes S. Albeverio;T. Hida;J. Pothoff;M. Rockner;L. Streit
  3. Z. Wahrscheinlichkeitstheorie verw. gebiete v.40 Dirichlet forms and diffusion processes on riggedHilbert spaces S.Albeverio;R.Høegh-Krohn
  4. Ann. Inst. Henri Poincare Sect. v.B13 Hunt processes and analytic potential theory on rigged Hilbert spaces S.Albeverio;R.Høegh-Krohn
  5. J. Math. Phys. v.18 Energy forms, Hamiltonians and distorled Brownian paths S.Albeverio;R.Høegh-Krohn;L. Streit
  6. Potential Anal. v.1 An approximate criterium of essential self-adjointness of Dirichlet operators S.Albeverio;Yu. G. Kondratiev;M. Rockner
  7. jour Potential Anal. v.2 S.Albeverio;Yu. G. Kondratiev;M. Rockner
  8. J. Funct. Anal. v.128 Dirichlet operators via stochastic analysis S.Albeverio;Yu. G. Kondratiev;M. Rockner
  9. BiBoS Print Ergodicity of L²-semigroups and extremality of Gibbs states S.Albeverio;Yu. G. Kondratiev;M. Rockner
  10. SFB v.348 Uniquencess of Gibbs states for quantum lattice systems S.Albeverio;Yu. G. Kondratiev;M. Rockner;T. V. Tsikalenko
  11. Dobrushin's uniqueness for quantum lattice systems with nonlocal interaction v.348 S.Albeverio;Yu. G. Kondratiev;M. Rockner;T. V. Tsikalenko
  12. J. Funct. Anal. v.88 Classical Dirichlet forms on topological vector spaces-closability and a Cameron-Martin formula S.Albeverio;M. Rockner
  13. Prob. Th. and Rel. Fields v.8 Classical Dirichlet forms on topological vector spaces-the construction of the associated diffusion processes S.Albeverio;M. Rockner
  14. Preprint BiBos No. 460 Log-Sobolew inequality for Dirichlet operators on Riemanian manifold and its application A. V. Antonjuk;Ju. G. Kondrtiev
  15. Preprint BiBos No. 478/91 Log-concave smooth measures on Hilbert space and some properties of corresponding Dirichlet operators A. V. Antonjuk;Ju. G. Kondratiev
  16. Lecture Notes in Mathematics v.1123 Diffusions hypercontractives, in “S´eminarire de probalilit´es XIX D. Bakry;M. Emery
  17. Commun. Math. Phys.;Commun. Math. Phys. v.129;126 First order phase transition in unbounded spin systems I,II, C. Borgs;R. Waxler
  18. Measure theory D. L. Cohn
  19. Large deviations J. ­D. Deuschel;D. W. Stroock
  20. J. Funct. Anal. v.92 Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising model J. D. Deuschell;D. W. Stroock
  21. Theory Prob. Appl. v.13 The description of a random field by means of conditional probabilities and conditions of its regularity R. L. Dobrushin
  22. Dirichlet forms and Markov processes M. Fukushima
  23. de Gruyter Studies in Mathematics v.9 Gibbs measures and phase transitions H.­O. Georgii
  24. Amer. J. Math. v.97 Logarithmic Sobolev inequalities L. Gross
  25. White noise: An infinite dimensional calculus T. Hida;H. ­H. Kuo;J. Potthoff;L. Streit
  26. Potential Anal. v.2 Infinitedimensional Dirichlet operators I: Essential self-adjointness and associated elliptic equations Ju. G. Kondratiev;T. V. Tsycalenko.
  27. J. Fac. Sci. Univ. Tokyo Sect. IA Math. v.29 Dirichlet forms and diffusion processes on Banach spaces S. Kusuoka
  28. Commun. Math. Phys. v.78 Statistical mechanics of systems of unbounded spins J. L. Lebowitz;E. Presutti
  29. Preprint YUMS Dirichlet forms and diffusion processes related to quantum unbounded spin systems H. Y. Lim;Y. M. Park;H. J. Yoo
  30. Dirichlet forms and Dirichlet operators for Gibbs measures of quantum unbounded spin systems : Essential self-adjointness and log-Sobolev H. Y. Lim;Y. M. Park;H. J. Yoo
  31. Commun. Math. Phys. v.156 Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics S. L. Lu;H.­T. Yau
  32. Commun. Math. Phys. v.161 Approach to equilibrium of Glauber dynamics in the one phase region, I and II F. Martinelli;E.Olivieri
  33. J. Stat. Phys. v.75 A characterization of Gibbs states of lattice boson systems Y. M. Park;H. J. Yoo
  34. J. Stat. Phys. v.80 Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems Y. M. Park;H. J. Yoo
  35. J. Math. Phys. Dirichlet operators for Gibbs measures on loop spaces : Essential self-adjointness and log-Sobolev inequality Y. M. Park;H. J. Yoo
  36. J. Funct. Anal. v.42 Diffusions on compact Riemannian manifolds and logarithmic Sobolev inequalities O. S. Rothaus
  37. Lecture Notes in Mathematics v.1563 General theory ofDirichlet forms and applications, in Dirichlet Forms M. Rockner;G. Dell’ Antonio(ed);U. Mosco(ed)
  38. Commun. Math. Phys. v.18 Superstable interactions in classical statistical mechanics D. Ruelle
  39. Commun. Math. Phys. v.50 Probability estimates for continuous spin systems D. Ruelle
  40. Lecture Notes YUMS 95-01 A course on infinite dimensional Dirichlet forms B. Schmuland
  41. General theory of Markov processes M. Sharpe
  42. Lecture Notes in Mathematics v.426 Symmetric Markov processes M. L. Silverstein
  43. Proc. Amer. Math. Soc. v.55 A remark on Nelson’s best hypercontractive estimates B. Simon
  44. Functional integration and quantum physics B. Simon
  45. Integration on Hilbert spaces A. V. Skorohod
  46. Lecture Notes in Mathematics v.1563 Logarithmic Sobolev inequality for Gibbs states, in Dirichlet Forms D. W. Stroock;G. Dell’Antonio(ed);U. Mosco(ed)
  47. J. Funct. Anal. v.104 The logarithmic Sobolev inequality for continuous spin systems on a lattice D. W. Stroock;B. Zegarlinski
  48. Commun. Math. Phys. v.144 The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Schlosman mixing condition D.W. Stroock;B. Zegarlinski
  49. Commun. Math. Phys. v.149 The logarithmic Sobolev inequalities for discrete spin systems on a lattice D.W. Stroock;B. Zegarlinski
  50. Osaka J. Math. v.22 On the uniqueness of Markovian self-adjoint extension of diffusion operators on infinite dimensional spaces M. Takeda
  51. Commun. Math. Phys. v.175 The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice B. Zegarlinski