ON STABILITY OF A TRANSFMISSION PROBLEM

  • Published : 1997.08.01

Abstract

We investigate the bahivor of the gradient of solutions to the refraction equation $div(( 1+ (k - 1)_\chi D)\nabla u) = 0$ under perturbation of domain D. If $u_h$ are solutions to the refraction equation corresponding to subdomains D and $D_h$ of a domain $\Omega$ in 2 dimensional plane with the same Neumann data on $\partial\Omega$, respectively, we prove that $\left\$\mid$ \nabla(u - u_h) \right\$\mid$_{L^2(\Omega)} \leq C\sqrt{dist(D, D_h)}$ where $dist(D, D_h)$ is the Hausdorff distance between D and $D_h$. We also show that this is the best possible result.

Keywords

References

  1. Trans. A. M. S. v.332 Inverse Problem in potential theory H. Bellout;A. Friedman;V. Isakov
  2. Arch. Rat. Mech. Anal. v.101 Identification Problems in potential theory H. Bellout;A. Friedman
  3. Ann. of Math. v.116 L’int$\'{e}$grale de Cauchy definit un op$\'{e}$rateur bourn$\'{e}$e sup L² pour courbes lipschitziennes R. R. Coifman;A.McIntosh;Y. Meyer
  4. Nonlinear Anal. v.10 The free boundary of a flow in a porous body heated from its boundary E. DiBenedetto;C. M. Elliot;A. Friedman
  5. Proceedings of AMS On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries L. Escauriaza;E. B. Fabes;G. Verchota
  6. Introduction to partial differential equations G. B. Folland
  7. Inverse conductivity problem with one measurement: global stability and approximate identification for perturbed disks E. Fabes;H. Kang;J. K. Seo
  8. Acta Math. v.141 Potential techniques for boundary value problems on C¹ domains E. B. Fabes;M. Jodeit;N.M. Riviere
  9. Inverse Problems v.12 Layer Potential technique for the Inverse Conductivity Problem H. Kang;J. K. Seo
  10. Singular integrals and differentiability properties of functions E. M. Stein
  11. J. of Functional Analysis v.59 Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains G. C. Verchota