ERROR ESTIMATES FOR A SINGLE-PHASE NONLINEAR STEFAN PROBLEM IN ONE SPACE DIMENSION

  • Lee, H.Y. (Department of Mathematics Kyungsung University ) ;
  • Ohm, M.R. (Department of Applied Mathematics Dongseo University ) ;
  • Shin, J.Y. (Department of Applied Mathematics Pukyong National University)
  • Published : 1997.08.01

Abstract

In this paper we introduce the semidiscrete solution of a single-phase nonlinear Stefan problem We analyze the optimal convergence of the semidiscrete solution in $H^1$ and $H^2$ normed spaces and also we derive the error estimates in $L^2$ normed space.

Keywords

References

  1. IMA J. Numer. Anal. v.9 A priori error estimates in H¹ and H² norms for Galerkin approximations to a single-phase nonlinear Stefan problem in one space dimension P. C. Das and A. K. Pani
  2. Proc. Symp. Mathematical Aspects of the Finite Element Method v.606 H¹-Galerkin methods for a nonlinear Dirichlet problem J. Douglas
  3. Error estimates for a single-phase quasilinear Stefan problem in one space dimension H. Y. Lee;J. R. Lee
  4. Proc. Recent Adv. Numer. Anal. Finite element approximations to the one-dimensional Stefan problem J. A. Nitsche;C de Boor(Ed);G. Golub(Ed)
  5. Free boundary problems I A finite element method for parabolic free boundary problems J. A. Nitsche;E. Magenes(Ed.)
  6. IMA J. Numer. Anal. v.11 A finite element Galerkin method for a unidimensional singlephase nonlinear Stefan problem with Dirichlet boundary conditions A. K. Pani;P. C. Das
  7. IMA J. Numer. Anal. v.11 A priori error estimates for a singlephase problem in one space dimension A. K. Pani;P. C. Das